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1 Sheaves

We will start a discussion on generalities regarding presheaves and sheaves. For more details, one can look at the
first section of chapter 2 of [Har77].
Sheaves are objects which carry local data on a topological space. What this means precisely will become clear
from the definitions and examples. To define sheaves, first we need to define a presheaf.

Definition. For a topological space X, set Top(X) to be the category whose objects are open subsets of X and
morphisms are inclusions of open sets. Then a presheaf on X (with values in a category C) is just a contravariant
functor from Top(X)→ C.
More explicitly, a presheaf F on X consists of the data of an object F(U) of C associated to every open set U of
X along with ”restriction” morphisms rUV : F(U)→ F(V ) corresponding to inclusions V ↪→ U of open sets of X
such that if we have a chain of inclusions W ↪→ V ↪→ U , then rUW = rVW ◦ rUV .

Examples :

1. Fix an object A in a category C. Then CA(U) = A, with all the restriction morphisms being the identity
morphism on A forms a presheaf on X called the constant presheaf with value A.

2. If X is a topological space (manifold, complex manifold, algebraic variety), then OX(U) = space of real-valued
continous functions (smooth functions, holomorphic functions, regular functions) on the open set U with the
restriction maps rUV (f) = f

∣∣
V

forms a presheaf on X with values in R-algebras (R-algebras, C-algebras,
k-algebras). We will see later that this is infact a sheaf, called the sheaf of real-valued continuous (real-valued
smooth, holomorphic, regular) functions on X.

3. Similar to the last example, one can consider F(U) = the real-vector space of real-valued bounded functions
on U , with the same restriction maps as the last example. This also forms a presheaf, which we will called
the presheaf of bounded continuous functions on X.

4. Let C = Mod(A), the category of modules over the ring A, then for an A-module M and a point P ∈ X,
we can define the presheaf MP by MP (U) = M if P ∈ M and MP (U) = 0 otherwise, with the restriction
map being identity on M if the smaller open set contains P and the zero map otherwise. This is also a sheaf,
known as the skyscraper sheaf at P with the value M .

5. Lastly, consider any continuous map p : E → X, then we have a presheaf given by F(U) = {s : U →
E continuous | p ◦ s = idU} the set of continuous sections of p over U , where the restriction maps again
simple restrict the domain of the section. This will also turn out to be a sheaf, called the sheaf of sections of
p.

We want to make the collection of presheaves into a category, i.e. we need a notion of morphisms between
presheaves.

Definition. A morphism φ : F → G between two presheaves with values in C is just a natural transformation
between the functors F : Top(X)→ C and G : Top(X)→ C.
Again, more explicity φ consists of morphisms φ(U) : F(U)→ G(U) in C for every open set U of X, such that the
following diagram commutes:

F(U) G(U)

F(V ) G(V )

φ(U)

rUV sUV

φ(V )
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where rUV and sUV denote restriction maps for F and G respectively.
This makes the collection of presheaves on X with values in C into a category, denoted by PShC(X).

We will only be working with the cases where C = Ab category of abelian groups (called presheaves of abelian
groups) or more generally C = Mod(A) the category of modules over a commutative ring with unity, A (called
presheaves of A-modules), and hence from now we will just write PSh(X) where it is understood that we are
talking about the category of presheaves on X with values in either of these categories, unless otherwise stated.
In these cases, given a presheaf F , the object F(U) is atleast a set and hence contains elements, which, following
the last example above, will be referred to as sections over U , and sections over all of X will sometimes be referred
to as global sections. Moreover, for a section s ∈ F(U), we will denote its image under the restriction map rUV
of F by s

∣∣
V

.

By a sub-presheaf of a presheaf F we mean a presheaf G such that for all open sets U , the modules G(U) are
submodules of F(U) and the restriction maps of G are simply the restriction maps of F restricted to these submod-
ules. Given a sub-presheaf G ↪→ F of F , we can construct the quotient presheaf F/G as F/G(U) = F(U)/G(U)
with the restriction maps being the ones induced by the restriction maps of F .
Given a morphism of presheaves φ : F → G, we can define the kernel presheaf (kerφ)(U) = ker(φ(U)), the im-
age presheaf (imPSh φ)(U) = im(φ(U)) as sub-presheaves of F and G respectively and cokerPSh φ as the quotient
presheaf G/ imφ.

Consider the category PSh(X) of presheaves on a space X with values in Mod(R)

• It contains a zero object, namely the constant presheaf with the value 0, i.e. the trivial module.

• It contains direct sums and products, which coincide, given by (F ⊕ G)(U) = F(U)⊕ G(U) and the obvious
restriction maps given by sums of restriction maps of the presheaves F and G.

• The collection of morphisms Hom(F ,G) forms an abelian group, where the sum of two morphisms is given
by adding the morphisms over each open set.

• The kernel and cokernel presheaves as defined above, satisfy the expected universal properties for kernels and
cokernels.

Together all of this shows that PSh(X) forms an abelian category. Therefore we have a notion of exactness, and it
is easy to see that a sequence of maps F → G → H is exact at G iff for all open sets U , the corresponding sequences
of modules F(U) → G(U) → H(U) are exact, since kernels, cokernels and images are defined by taking kernels,
cokernels and images over each open set.

Finally, we will give the definition of a sheaf.

Definition. A presheaf F is called a sheaf, given any open set U and an open cover {Ui}i∈I of U , it satisfies the
following two conditions:

• (Identity axiom) For two sections s, t ∈ F(U), if s
∣∣
Ui

= t
∣∣
Ui

for all i ∈ I, then s = t.

• (Glueability axiom) For a collection of sections {si}i∈I , where si ∈ F(Ui) such that si
∣∣
Ui∩Uj

= sj
∣∣
Ui∩Uj

, there

exists a section s ∈ F(U) such that s
∣∣
Ui

= si.

A morphism of sheaves from F to G is simply a morphism of presheaves F → G. We denote the category of sheaves
by Sh(X)

It is an easy exercise to check that the examples 2,4 and 5 of presheaves given above are actually sheaves. For
2 and 5, it follows from the fact that continuous (smooth, holomorphic, regular) functions on open subsets can be
glued together if they agree on the intersections, which is exactly the glueability axiom above, and the fact that
these functions are determined by their values at each point, which is infact a little stronger than the identity
axiom. The example 3 turns out to not be a sheaf in general since, for example, if we take X = R the real line, then
the restriction of the identity map to open intervals ]n, n + 2[ are bounded continuous functions but they do not
glue together to give a bounded continuous function on the entire real line. This reflects the fact that boundedness
is not a ”local” condition. Similarly, in example 1, if we take the category C to be the category of sets or modules
over a ring, then the sections of the constant presheaf globally assign an element of A to the entire space. To
see that this isn’t a sheaf, simply take X to be the two point space with the discrete topology and consider the
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2-element cover consisting of each of the points.

It is easy to see the that given a morphism of sheaves, the kernel presheaf is actually a sheaf. But the same is
not true for the image presheaf. Consider the example,

OCP1 → CP ⊕ CQ
f 7→ (f(P ), f(Q))

Where OCP1 is the sheaf of holomorphic functions on the Riemann sphere and CP ⊕ CQ is the direct sum of the
skyscraper sheaves at P and Q with value C. Then it is easy to see, that over the open sets CP1−P and CP1−Q,
the map of sections is surjective. But since there are no nonconstant holomorphic functions on all of CP1, the
map on global sections is the diagonal embedding C → C ⊕ C. But in the image presheaf, we have all sections of
CP ⊕ CQ over CP1 − P and CP1 − Q. CP ⊕ CQ has no non-zero sections over the intersection CP1 − {P,Q}, so
every pair of sections over CP1 − P and CP1 −Q agree on the overlap. But then glueability would imply that all
of C ⊕ C lies in the global sections of the image presheaf, which is not true (only the diagonal elements lie in the
global sections of the image presheaf).
Generally this occurs because if a collection of sections in the image presheaf agree on intersections, it doesn’t
necessarily mean that their preimages would agree on the intersections, not allowing to glue in the domain sheaf to
get a glued image. To get around this, we define the image sheaf to be the sheafification of the image presheaf.
One can define the sheafification of an arbitrary presheaf, but here we only need to worry about the case of the
image presheaf.

Definition. Given a morphism of sheaves φ : F → G, we define the image sheaf imφ to be the subsheaf of G
given by,

(imφ)(U) = {s ∈ G(U) | ∃ a cover {Ui}i∈I of U such that s
∣∣
Ui
∈ im(φ(Ui))}

With these definition of kernel and image sheafs, the category of sheaves also turns out to be an abelian category,
but exactness can no longer be checked over each open set since the image sheaf is larger than the image presheaf.

Definition. The stalk of a presheaf F at a point P ∈ X is defined by the direct limit:

FP = lim−→
P∈U
F(U)

The image of a section s ∈ F(U) over an open set U containing P in the stalk at P is denoted by sP .

The stalk at P can be interpreted as germs of sections of F at the point P , i.e. the elements of the stalk can
be interpreted as equivalence classes of pairs (U, f), where U is an open set containing U and f ∈ F(U), such that
(U, f) ∼ (V, g) if there exists an open set W ⊂ U ∩ V containing P such that f

∣∣
W

= g
∣∣
W

. In particular, in the
second example above, the stalk at a point is in fact, the collection of germs of continuous (smooth, holomorphic,
regular) functions at that point. Note that if the presheaf F takes values in Mod(R), then the stalks also inherit
the structure of an R-module.
Given a morphism φ : F → G of presheaves, it induces a morphism φP : FP → GP on the stalks at all the points
P ∈ X. Since taking direct limits in the category of modules is exact, given an exact sequence F → G → H, the
induced sequences of the stalks at all points P ∈ X, FP → GP → HP will also be exact. The converse however is
not true as again in the example on the Riemann Sphere above, the maps on the stalks are all surjective, but the
maps on global sections is clearly not. However the converse does hold for sheaves, and hence exactness for sheaves
is the same as exactness for stalks at all points. We won’t be using this so we omit the proof. Lastly, we will define
the global sections functor.

Definition. Given a topological space X, the functor Γ(X,−) : Sh(X)→ Ab (or Mod(A)) defined by

Γ(X,F) = F(X)

is called the global sections functor. Given a morphism of sheaves φ : F → G, this functor maps it to the induced
map on global sections Γ(X,φ) = φ(X).

From our discussion above it is easy to see that this functor is left exact. Čech cohomology is usually used to
compute the right derived functors of the global sections functor. In this project we will independently study Čech
cohomology and show that the de Rham cohomology of a manifold is infact the Čech cohomology of an extremely
simple sheaf.
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2 Čech Cohomology

In this section we will be using some terms and elementary results from homological algebra. For reference, one
can look at the first chapter of [Wei94]. Our exposition follows chapter 3 section 4 of [Har77].
We will now define the Čech Cohomology groups of a sheaf F with values in Ab, with respect to a cover of the
space X. Let U = {Ui}i∈I be an open covering of X, where I is a totally ordered indexing set. For a sequence of
indices i0 < · · · < ip, set Ui0...ip = ∩pk=0Uik . For p ≥ 0, define the the module of p-cochains to be

Cp(U,F) =
∏

i0<···<ip

F(Ui0...ip)

An element α ∈ Cp(U,F) consists of elements αi0...ip ∈ F(Ui0...ip) for all increasing sets of indices i0 < · · · < ip.
We extend this to all possible p + 1 tuples of indices i0, . . . , ip by setting αi0...ip = 0 if any two of the indices
i0, . . . , ip are equal and for any arbitrary collection of distinct indices i0, . . . , ip, we set αi0...ip = sgn(σ)ασ(i0)...σ(ip)
where σ is the unique permutation of the indices i0 . . . ip such that σ(i0) < · · · < σ(ip) and sgn(σ) is the sign of
the permutation σ. This more generally sets αi0...ip = sgn(σ)ασ(i0)...σ(ip) for all permutations σ since the sign map
is a group homomorphism. We define the co-boundary map dp : Cp(U,F)→ Cp+1(U,F) as,

(dpα)i0...ip+1
=

p+1∑
k=0

(−1)kαi0...îk...ip+1

∣∣
Ui0...ip+1

where îk means we omit ik from the series of indices i0 . . . ip+1. Since it is clear what open set we are restricting to
in the RHS, we will omit the restriction in future computations. We initially make this definition only for increasing
sequences of indices i0 < · · · < ip+1, but if we consider the sum in the RHS for arbitrary indices i0, . . . , ip+1 and
swap ir and ir+1, (i.e. consider indices j0, . . . jp, where jk = ik for k 6= r, r + 1 and jr = ir+1, jr+1 = ir) we get,

p+1∑
k=0

(−1)kαj0...ĵk...jp+1
=

r−1∑
k=0

(−1)kαj0...ĵk...jp+1
+ (−1)rαj0...ĵr...jp+1

+ (−1)r+1αj0...ĵk+1...jr+1
+

p+1∑
k=r+1

(−1)kαj0...ĵk...jp+1

=

r−1∑
k=0

(−1)k+1αi0...îk...ip+1
+ (−1)rαi0...îr+1...ip+1

+ (−1)r+1αi0...îk...jr+1
+

p+1∑
k=r+1

(−1)k+1αi0...îk...ip+1

= −
p+1∑
k=0

(−1)kαi0...îk...ip+1

Since adjacent transpositions generate all permutations, have sign (−1) and sign is a group homomorphism, this
shows,

p+1∑
k=0

(−1)kα
σ(i0)...σ̂(jk)...σip+1

= sgn(σ)

p+1∑
k=0

(−1)kαi0...îk...ip+1

for all indices i0, . . . , ip+1. This shows that our definition of the coboundary map above respects our extension of
definition of (dα)i0...ip+1

for all possible indices i0, . . . , ip+1. For this to make a complex we need dp+1 ◦ dp = 0, but
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that can be easily seen, since,

(dp+1(dpα))i0...ip+2
=

p+2∑
k=0

(−1)k(dpα)i0...îk...ip+2

=

p+2∑
k=0

(−1)k

(
k−1∑
l=0

(−1)lαi0...îl...îk...ip+2
+

p+2∑
l=k+1

(−1)l−1αi0...îk...îl...ip+2

)

=

p+2∑
k=0

k−1∑
l=0

(−1)l+kαi0...îl...îk...ip+2
+

p+2∑
k=0

p+2∑
l=k+1

(−1)l+k−1αi0...îk...îl...ip+2

=

p+2∑
k=0

k−1∑
l=0

(−1)l+kαi0...îl...îk...ip+2
+

p+2∑
l=0

p+2∑
k=l+1

(−1)l+k−1αi0...îl...îk...ip+2
(replace l and k)

=

p+2∑
k=0

k−1∑
l=0

(−1)l+kαi0...îl...îk...ip+2
+

p+2∑
k=0

k−1∑
l=0

(−1)l+k−1αi0...îl...îk...ip+2
(interchanging the order of sum)

= 0

Therefore, if we set Cp(U,F) = 0 for p < 0, we have a cochain complex C•(U,F) of abelian groups given by,

. . . 0 C0(U,F) C1(U,F) C2(U,F) . . .d0 d1 d2

Definition. The complex C•(U,F) is called the Čech complex of F with respect to the cover U. Its cohomology
is called the Čech cohomology of F with respect to the cover U and is denoted by Ȟ?(U,F), i.e.,

Ȟp(U,F) = hp(C•(U,F))

The 0th Čech cohomology group can be easily computed:

Lemma 2.1. Ȟ0(U,F) ∼= Γ(X,F)

Proof. Since C−1(U,F) = 0, Ȟ(U,F) = ker d0. For α ∈ C0(U,F), (dα)ij = αj − αi. Consider the map s ∈
Γ(X,F) 7→ (s

∣∣
Ui

)i∈I ∈ C0(U,F). Since (d(s
∣∣
Ui

)) = s
∣∣
Ui∩Uj

− s
∣∣
Ui∩Uj

= 0, the image of this map lies in ker d1 =

Ȟ(U,F). For any α ∈ ker d1, αi ∈ F(Ui), with (dα)ij = αj
∣∣
Ui∩Uj

−αi
∣∣
Ui∩Uj

= 0, i.e. αi
∣∣
Ui∩Uj

= αj
∣∣
Ui∩Uj

. Now the

injectivity and the surjectivity of this map follows from (and is equivalent to) the identity and glueability axioms
of sheaves.

Definition. We define the augmented Čech complex of F w.r.t U, to be the complex,

0 Γ(X,F) C0(U,F) C1(U,F) . . .

where the second map is the one defined in the lemma 2.1. From the same lemma, it is clear that this complex is
exact at Γ(X,F) and C0(U,F).

The higher Čech cohomology groups generally depend on the cover U, but are not completely unrelated for
different covers. What follows is borrowed from chapter 2 section 10 of [BT82].

Definition. Given covers U = {Ui}i∈I and V = {Vj}j∈J , we say V is a refinement of U (we write U < V) if
there exists a map φ : J → I such that for all j ∈ J , Vj ⊂ Uφ(j).

Given such a map φ, we can construct maps,

φ# : Cp(U,F)→ Cp(V,F)

α 7→ φ#α

where (φ#α)i0...ip = αφ(i0)...φ(ip)
∣∣
Vi0...ip

It follows directly from definitions that φ◦d = d◦φ, and hence φ# : C•(U,F)→ C•(V,F) is a morphism of cochain
complexes. In particular, this induces a map from Čech cohomology w.r.t. U to the Čech cohomology w.r.t. F.
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Lemma 2.2. The map induced on the cohomologies does not depend on the choice of the map φ. In particular, given
covers U and V with U < V there are a well-defined maps fUV : Ȟ?(U,F) → Ȟ?(V,F), making the cohomologies
{Ȟ?(U,F)}U into a directed system of groups indexed by covers U ordered by refinement.

Proof. We show this by constructing a chain homotopy between maps φ# and ψ# where φ : J → I and ψ : J → I
are such that Vj ⊂ Uφ(j) ∩ Uψ(j) for all j ∈ J . Consider the map:

K : Cp(U,F)→ Cp−1(V,F)

α 7→ Kα

where (Kα)j0...jp−1 =

p−1∑
k=0

(−1)kαφ(j0)...φ(jk)ψ(jk)...φ(jp−1)

Then we have,

((Kd)α)j0...jp =

p∑
k=0

(−1)k(dα)φ(j0)...φ(jk)ψ(jk)...φ(jp)

=

p∑
k=0

(−1)k

(
k∑
l=0

(−1)lα
φ(j0)...φ̂(jl)...φ(jk)ψ(jk)...ψ(jp)

+

p∑
l=k

(−1)l+1α
φ(j0)...φ(jk)ψ(jk)...ψ̂(jl)...ψ(jp)

)

=

p∑
k=0

(−1)k
p∑
l=k

(−1)l+1α
φ(j0)...φ(jk)ψ(jk)...ψ̂(jl)...ψ(jp)

+

p∑
k=0

(−1)k−1
k∑
l=0

(−1)l+1α
φ(j0)...φ̂(jl)...φ(jk)ψ(jk)...ψ(jp)

((dK)α)j0...jp =

p∑
k=0

(−1)k(Kα)j0...ĵk...jp

=

p∑
k=0

(−1)k

(
k−1∑
l=0

(−1)lα
φ(j0)...φ(jl)ψ(jl)...ψ̂(jk)...ψ(jp)

+

p∑
l=k+1

(−1)l−1α
φ(j0)...φ̂(jk)...φ(jl)ψ(jl)...ψ(jp)

)

=

p−1∑
l=0

(−1)l
p∑

k=l+1

(−1)kα
φ(j0)...φ(jl)ψ(jl)...ψ̂(jk)...ψ(jp)

+

p∑
l=1

(−1)l−1
l−1∑
k=0

(−1)kα
φ(j0)...φ̂(jk)...φ(jl)ψ(jl)...ψ(jp)

=

p−1∑
k=0

(−1)k
p∑

l=k+1

(−1)lα
φ(j0)...φ(jk)ψ(jk)...ψ̂(jl)...ψ(jp)

+

p∑
k=1

(−1)k−1
k−1∑
l=0

(−1)lα
φ(j0)...φ̂(jl)...φ(jk)ψ(jk)...ψ(jp)

((Kd+ dK)α)j0...jp = (−1)p(−1)p+1αφ(j0)...φ(jp) +

p−1∑
k=0

(−1)k(−1)k+1αφ(j0)...φ(jk)ψ(jk+1)...ψ(jp))

+ αψ(j0)...ψ(jp) +

p∑
k=1

(−1)k−1(−1)k+1αφ(j0)...φ(jk−1)ψ(jk)...ψ(jp)

= αψ(j0)...ψ(jp) − αφ(j0)...φ(jp)
= (ψ#α)j0...jp − (φ#α)j0...jp

Therefore ψ# − φ# = Kd + dK, and hence K is a chain homotopy between φ# and ψ#. This immediately gives
us that the induced maps on the cohomologies are the same. Hence we denote the map induced on cohomologies
by any such φ# to be fUV.
The claim about directed systems is obvious from the following facts:

• U < U, where φ can be taken to be identity map idI on the indexing set of U. It is clear that id#
I induces the

identity map on the Čech cohomology groups, and hence fUU is the identity map.

• If there are covers U, V and W with indexing sets I, J and K, such that U < V and V < W, and maps
φ : J → I and ψ : K → J are such that Vj ⊂ Uφ(j) for all j ∈ J and Wk ⊂ Vψ(k) for all k ∈ K. Then trivially,

we have Wk ⊂ U(φ◦ψ)(k) for all k ∈ K which gives U <W. It is easy to see that (φ ◦ ψ)# = ψ# ◦ φ#. This in
turn shows that the fUW = fVW ◦ fUV.
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Definition. The Čech cohomology Ȟ?(X,F) of X with values in F is defined to be the direct limit of the
directed system mentioned in the previous lemma, i.e.,

Ȟp(X,F) = lim−→
U

Ȟp(U,F)

It follows almost immediately from lemma 2.1 and looking at the maps in the directed system of the zeroth Čech
cohomologies w.r.t. covers that Ȟ(X,F) ∼= Γ(X,F). In general it can be difficult to compute the Čech cohomology
groups, but in many cases, it suffices to compute the cohomology w.r.t. a nice enough cover.
Now we’ll set up some tools to compute the Čech cohomology using resolutions. The following slightly generalises
ideas from chapter 2 section 8 of [BT82].

Definition. We call a sheaf A acyclic w.r.t. the cover U if Ȟi(U,A) = 0 for i > 0.

Definition. Given a sheaf F , a complex of sheaves of the form

0 F A1 A2 A3 . . .

is called a resolution w.r.t. U if for all p ≥ 0 and all sequences of indices i0 < · · · < ip, the sequence

0 F(Ui0...ip) A1(Ui0...ip) A2(Ui0...ip) A3(Ui0...ip) . . .

Moreover, we call this an acyclic resolution w.r.t. U if Ai are acyclic w.r.t. U for all i ≥ 0.

Before we actually use these definitions, first a small discussion on double complexes. By a double (cochain)
complex of abelian groups (A-modules), we mean a collection C•,• of abelian groups (A-modules) indexed by pairs
of integers, and maps dp,qv : Cp,q → Cp,q+1 and dp,qh : Cp,q → Cp+1,q (v and h stand for vertical and horizontal

respectively), such that (C•,q, d•,qh ) and (Cp,•, dp,•v ) are (cochain) complexes and dp,q+1
h ◦ dp,qv = dp+1,q

v ◦ dp,qh for all
p, q ∈ Z. To make it easier to see what this means, consider the diagram:

...
...

...

. . . Cp−1,q+1 Cp,q+1 Cp+1,q+1 . . .

. . . Cp−1,q Cp,q Cp+1,q . . .

. . . Cp−1,q−1 Cp,q−1 Cp+1,q−1 . . .

...
...

...

dh dh

dv

dh

dv

dh

dv

dh dh

dv

dh

dv

dh

dv

dh dh

dv

dh

dv

dh

dv

dv dv dv

where we have omitted the superscripts on the maps d•,•v and d•,•h for clarity. Then the above conditions simply
say that the rows and columns of this diagram form complexes, and every square in the diagram commutes. We
associate a complex to every double complex called its total complex Tot(C)•, defined by:

Tot(C)n =
⊕
p+q=n

Cp,q

with the coboundary maps given by:

(dnα)p,q = dp−1,qh αp−1,q + (−1)pdp,q−1v αp,q−1; p+ q = n+ 1
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where for a cochain α ∈ Tot(C)n, we write αp,q for its image under the projection to Cp,q. To see this actually
forms a complex, simply note that,

((dn+1 ◦ dn)α)p,q = dp−1,qh (dnα)p−1,q + (−1)pdp,q−1v (dnα)p,q−1

= dp−1,qh (dp−2,qh αp−2,q + (−1)p−1dp−1,q−1v αp−1,q−1) + (−1)pdp,q−1v (dp−1,q−1h αp−1,q−1 + (−1)pdp,q−2v αp,q−2))

= (dp−1,qh ◦ dp−2,qh )αp−2,q + (−1)p−1(dp−1,qh ◦ dp−1,q−1v − dp,q−1v ◦ dp−1,q−1h )αp−1,q−1 + (dp,q−2h ◦ dp,q−2h )αp,q−2

= 0

where the first, second and third term in the last expression vanish due to the rows forming a complex, commuta-
tivity of the squares and the columns forming a complex respectively.

Remark: What we have defined here is generally denoted as Tot⊕(C)•. One can also define a complex
Tot

∏
(C)• with Tot

∏
(C)n =

∏
p+q=n C

p,q and the same coboundary maps, with the exact same proof showing that
this forms a complex. But we are only going to be working with in double complexes which are bounded in the
first quadrant, i.e. Cp,q = 0 if p < 0 or q < 0. In this case, the diagonals p + q = n contain only finitely many
non-trivial groups (A-modules) so both these definitions coincide.

For a double complex C•,• bounded in the first quadrant, consider the augmented complex formed by adding
a column of degree −1 given by ker d0,•h : C0,• → C1,•. This looks like:

...
...

...
...

0 K2 C0,2 C1,2 . . .

0 K1 C0,1 C1,1 . . .

0 K0 C0,0 C1,0 . . .

ε2

e2

dh

dv

dh

dv

ε1

e1

dh

dv

dh

dv

ε0

e0

dh

dv

dh

dv

where (K•, e•) is the kernel of the morphism of complexes d0,•h and ε• is the inclusion of the complex K• into C0,•.
Then we have:

Lemma 2.3. If the augmented complex above has exact rows, then the cohomology of the total complex Tot(C)• is
isomorphic to the cohomology of the the complex K•.

Proof. First observe that there is an obvious map of complexes from i• : C0,• → Tot(C)•, where i• is the canonical
map from C0,• → ⊕p+q=•Cp,q. We define the map r• = i• ◦ ε• : K• → Tot(C)•. We will show that the induced
map on the cohomologies r? : h?(K•)→ h?(Tot(C)•) are isomorphisms.

To show this first we will prove the following lemma: if α = (αp,q)p+q=n is a cochain in the total complex such
that (dnα)p,q = 0 for all p > 1, then there exists a β0,n ∈ C0,n such that the cochain β = (βp,q)p+q=n defined as
βp,q = 0 for p 6= 0 differs from α by a coboundary.
We prove this by inducting on the the largest pm such that αpm,q 6= 0. Firstly, we know such a pm exists since our
double complex is bounded. If pm = 0, we are trivially done with β0,n = α0,n. Set qm = n − pm. If pm > 0, note
that,

0 = (dα)pm+1,qm = dpm,qmh αpm,qm + (−1)pmdpm+1,qm−1
v αpm+1,qm−1

= dpm,qmh αpm,qm

since αpm+1,qm−1 = 0. Then by exactness of the rows at Cpm,qm , αpm,qm = dpm−1,qmh γpm−1,qm for some γpm−1,qm ∈
Cpm−1,qm . Consider the cochain γ = (γp,q)p+q=n−1, given by γp,q = 0 for p 6= pm − 1. Then (α− dn−1γ)p,q = 0 for
p > pm since αp,q = 0 for p > pm and γp,q = 0 for p ≥ pm. But we also have,

(α− dn−1γ)pm,qm = αpm,qm − (dpm−1,qmh γpm−1,qm + (−1)pmdpm,qm−1v γpm,qm−1) = 0

8



We have found a cochain α′ = α − dn−1γ which differs from α by the coboundary dn−1γ, such that the largest p
for which α′p,q 6= 0 is less than pm. Therefore, we are done by induction.

Now to show that r∗ is an isomorphism.

• r∗ is surjective. By the above lemma, for every cohomology class in the total complex contains a repre-
sentative of the form β = (βp,q)p+q=n such that βp,q = 0 for p 6= 0. We have 0 = (dnβ)1,n = d0,nh β0,n +

(−1)1d1,n−1v β1,n−1 = d0,nh β0,n. Then by exactness of the rows at C0,n, β0,n = εnc for some c ∈ Kn. Moreover
(εn+1 ◦ en)c = (d0,n+1

v ◦ εn)c = d0,n+1
n β0,n = 0, which implies enc = 0 due to the injectivity of εn+1. Therefore

c represents a cohomology class of K• and rnc = β, which gives us that r∗ is surjective.

• r∗ is injective. If c is a K• n-cocycle which maps to a coboundary under r•, i.e. rnc = dn−1α for an
(n − 1)-cochain α of the total complex. It is easy to see that (dn−1α)p,q = (rnc)p,q = 0 for p ≥ 1, so by
the above lemma, there exists a β = (βp,q)p+q=n−1 such that βp,q = 0 for p 6= 0 which differs from α by a

coboundary. Moreover 0 = (dn−1α)1,n−1 = (dn−1β)1,n−1 = d0,n−1h β0,n−1+(−1)1d1,n−2v β1,n−2 = d0,n−1h β0,n−1.
Therefore by exactness of rows at C0,n−1, there exists a c′ ∈ Kn−1 such that εn−1c′ = β0,n−1. Finally since
(εn ◦en−1)c′ = (d0,nv ◦ εn−1)c′ = d0,n−1v β0,n−1 = (dn−1β)0,n = (dn−1α)0,n = (rnc)0,n = εnc, and εn is injective,
c = en−1c

′ and hence is a coboundary. This shows that r∗ is injective.

We can also augment our double complex by adding a row of degree −1 given by ker d•,0v : C•,0 → C•,1. This
looks like:

...
...

...

C0,1 C1,1 C2,1 . . .

C0,0 C1,0 C2,0 . . .

L0 L1 L2 . . .

0 0 0 . . .

dh

dv

dh

dv

dh

dv

dh

dv

dh

dv

dh

dv

f0

δ0

f1

δ1

f2

δ2

where (L•, f•) is the kernel of the morphism of complexes d•,0v and δ• is the inclusion of the complex L• into C•,0.
By essentially the same argument as for the proof of lemma 2.3, we can prove:

Lemma 2.4. If the augmented complex above has exact columns, then the cohomology of the total complex Tot(C)•

is isomorphic to the cohomology of the the complex L•.

Proof. Omitted

Coming back to Čech cohomology, for a cover U and a complex of sheaves

0 F A1 A2 A3 . . .

Consider the double complex Cp,q = Cp(U,Aq), where the row maps are the Čech coboundary maps and the column
maps are the ones induced on the sections over open sets by the morphism of sheaves in the given complex. Then
we have the following theorem,

Theorem 2.5. 1. If Aq are acyclic w.r.t the cover U, then h?(Γ(X,A•)) ∼= h?(C•(U,A•)).

2. If the complex,

0 F A1 A2 A3 . . .

is a resolution w.r.t. the cover U, then Ȟ?(U,F) ∼= h?(C•(U,A•)).
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Proof. 1. Consider the augmented complex as in lemma 2.3 for the double complex Cp(U,Aq). It follows easily
from 2.1 that the complex K• = Γ(X,A•). Moreover, the condition that Aq are acyclic w.r.t U is exactly
the condition that the rows of this augmented complex are exact. Then the result immediately follows from
lemma 2.3.

2. Consider the augmented complex as in lemma 2.4 for the double complex Cp(U,Aq). Since the given complex
is a resolution w.r.t. U, we have,

0 F(Ui0...ip) A1(Ui0...ip) A2(Ui0...ip) A3(Ui0...ip) . . .

for all increasing sets of indices i0 < · · · < ip. Taking products this shows us both that the complex
L• = C•(U,F) and that the columns of the augmented complex are exact. Then the result immediately
follows from lemma 2.4.

Corollary 2.6. If the given complex is an acyclic resolution w.r.t U, then Ȟ?(U,F) ∼= h?(Γ(X,A•)).

Finally, we define an important class of sheaves and quote and important theorem about them, which we will
use later on.

Definition. A sheaf F on X is said to be flasque, if all its restriction maps are surjective.

Theorem 2.7. Given a flasque sheaf F and any cover U on X, Ȟp(U,F) = 0 for all p > 0.

Proof. See Chapter 3, Proposition 4.3 of [Har77].

3 de Rham cohomology and the Generalized Mayer-Vietoris Sequence

Throughout this section, X will be a smooth manifold unless stated otherwise.

Definition. The sheaf of differential q-forms ΩqX is defined to be the sheaf of smooth sections of the qth exterior
power of the cotangent bundle,

∧r
(T ∗X)→ X. Note that since this is a real vector bundle, this is a sheaf of with

values in Mod(R), i.e. the category of real vector spaces.
The (sheafified) de Rham complex is the complex of sheaves given by

0 Ω0
X Ω1

X Ω2
X . . .d d d

where the coboundary maps are given by taking exterior derivatives of differential forms over each open set.

To differentiate the Čech coboundary from the exterior derivative map, we will use δ for the Čech coboundary
for the rest of this document.
The usual de Rham complex can be obtained by applying the global sections functor to the sheafified de Rham
complex.

Definition. The de Rham cohomology of X, H?
dR(X) is given by the cohomology of the complex of global

sections of the de Rham complex, i.e. H?
dR(X) = h?(Γ(X,Ω•X)).

The de-Rham cohomology of Euclidean space is given by:

Theorem 3.1. (Poincaré Lemma of de Rham cohomology)

H?
dR(Rn) =

{
R ; ? = 0

0 ; otherwise

A proof can be found in any standard text on manifolds.

Now we state and prove the Generalized Mayer-Vietoris Sequence:

10



Theorem 3.2. (The Generalized Mayer-Vietoris Sequence)
For any cover U of X, the augmented Čech complex for Ω?X , i.e.,

0 Γ(X,Ω?X) C0(U,Ω?X) C1(U,Ω?X) . . .δ δ

is exact. Equivalently, Ω?X are acyclic w.r.t any cover U.

Proof. We show this by constructing a chain homotopy between the identity and the zero maps from this complex
to itself. Since chain homotopic maps induce the same maps on cohomologies, the identity map on the cohomologies
must be the same as the zero map, i.e. the cohomologies vanish and the complex is exact. Consider a partition of
unity {ρi}i∈I subordinate to the cover U = {Ui}i∈I . Consider the map:

K : Cp(U,Ω?X)→ Cp−1(U,Ω?X)

ω 7→ Kω

where (Kω)i0...ip−1
=
∑
i∈I

ρiωii0...ip−1

Then we have,

((δK +Kδ)ω)i0...ip =

p∑
k=0

(−1)k(Kω)i0...îk...ip +
∑
i∈I

ρi(δω)ii0...ip

=

p∑
k=0

(−1)k
∑
i∈I

ρiωii0...îk...ip +
∑
i∈I

ρiωi0...ip +
∑
i∈I

p∑
k=0

(−1)k+1ρiωii0...îk...ip−1

=

(∑
i∈I

ρi

)
ωi0...ip = ωi0...ip

Hence δK +Kδ = id, and we are done.

Remark: If our cover consists of just two open sets, this reduces to the short exact sequence of complexes,

0 Ω?X(X) Ω?X(U)⊕ Ω?X(V ) Ω?X(U ∩ V ) 0

whose long exact sequence gives us the usual Mayer-Vietoris sequence.

Definition. Given a topological space X, and an abelian group (A module) M , the locally constant sheaf MX

associated to M is the sheaf of locally constant functions to M , i.e.

MX(U) = {f : U →M | f is locally constant}

where the restriction map rUV , restricts the domain of the a function f from U to V .
When X is manifold and M = R, the sheaf RX is simply the sheaf of locally constant (real-valued) functions
on X.

Note that Ω0
X is simply the sheaf of real-valued smooth functions on X. If a smooth function f is such that

df = 0, then f is locally constant. Therefore, the kernel of d : Ω0
X → Ω1

X is exactly RX . Therefore we have a
complex of sheaves,

0 RX Ω0
X Ω1

X Ω2
X . . .d d d

where ΩqX are acyclic w.r.t any cover U of X. Poincaré Lemma says that if X = Rn and the cover U consists of
just one element, i.e. the entire space, then the above complex is a resolution w.r.t. this cover. More generally, for
any manifold X, if we have a cover U = {Ui}i∈I of X such that for any finite sequence of indices i0 < · · · < ip,
Ui0...ip

∼= Rn, then the above complex is an acyclic resolution w.r.t. this cover. We call such covers good covers.
Turns out:

Theorem 3.3. Every manifold admits a good cover. Moreover, such covers are cofinal in the directed system of
covers ordered by refinement.
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Proof. See Theorem 5.1 and the discussion afterwards in [BT82]

We can immediately conclude:

Theorem 3.4. For any manifold X, and a good cover U of X,

H?
dR(X) ∼= Ȟ?(U,RX) ∼= Ȟ?(X,RX)

Proof. The second isomorphism follows from the cofinality claim of theorem 3.3. The first isomorphism follows
from the discussion preceding theorem 3.3 and corollary 2.6.

4 Singular Cohomology

Let X now be a locally contracible topological space, and M be an abelian group (A-module).

Definition. The sheaf of singular q-chains with values in M , Cp(X,M) is given by, Cp(X,M)(U) =
Cp(U,M), the group (module) of singular p-cochains on the subspace U , with the restriction maps being com-
position of cochains on U with the pushforward of singular p-chains from a smaller open set V to U .
The (sheafified) singular cochain complex of X with values in M is the complex:

0 C0(X,M) C1(X,M) C2(X,M) . . .d d d

where d is defined as the usual singular coboundary map over each open set.

The usual singular cochain complex can be obtained by taking global sections of the sheafified complex.

Definition. The singular cohomology of X with values in M , H?(X,M) is given by the cohomology of the
complex of global sections of the singular cochain complex, i.e. H?(X,M) = h?(Γ(X, C•(X,M))).

For contractible spaces:

Theorem 4.1. (Poincaré Lemma for singular cohomology)
If X is contractible,

H?(X,M) =

{
M ; ? = 0

0 ; otherwise

Proof. A proof can be found in any standard text on algebraic topology.

Note that C0(X,M) is just the sheaf of set-theoretic maps from X to M , with ker d : C0(X,M) → C0(X,M)
being the sheaf of those maps from X → M which take the same value on the boundary of singular 1-chains,
i.e. constant on path-components. Since X is locally contractible, path-components are the same as connected
components, therefore the kernel is exactly the locally constant sheaf MX . Therefore we have a complex of sheaves,

0 MX C0(X,M) C1(X,M) C2(X,M) . . .

The sheaves C?(X,M) are trivially flasque, since any cochain on an open subset can be extended by zero to a
cochain on the entire space which restricts to the cochain we started with. Hence by theorem 2.7, C?(X,M) are
acyclic. Consider the case X is a manifold. Since Rn is contractible, by Poincaré lemma for singular cohomology,
the above complex is acyclic w.r.t. a good cover of X. By exactly the same argument as in theorem 3.4, we get,

Theorem 4.2. For any manifold X, and a good cover U of X,

H?(X,M) ∼= Ȟ?(U,MX) ∼= Ȟ?(X,MX)

Corollary 4.3. (The de Rham isomorphism)

H?(X,R) ∼= H?
dR(X)

Proof. Follows immediately from theorems 3.4 and 4.2 for M = R.
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