Number Fields Races

Devang Agarwal

Mathematics Department University of British Columbia

$\pi_{K}(x)$ vs. $\operatorname{li}(x)$

In 1903, Landau proved the Prime Ideal Theorem,

$$
\psi_{K}(x) \sim x \quad \pi_{K}(x) \sim \operatorname{li}(x)
$$

where,

$$
\psi_{K}(x)=\sum_{N\left(\mathfrak{p}^{k}\right) \leq x} \log N(\mathfrak{p})
$$

$$
\pi_{K}(x)=\sum_{N(\mathfrak{p}) \leq x} 1
$$

Moreover, in 1918, assuming a slightly weakened form of the GRH (allowing for real zeroes not on the critical line) for $\zeta_{K}(s)$, he proved,

$$
\begin{aligned}
\psi_{K}(x)-x+\sum_{\gamma=0} \frac{x^{\rho}}{\rho} & =\Omega_{ \pm}(\sqrt{x} \log \log \log x) \\
\pi_{K}(x)-\mathrm{i}(x)+\sum_{\gamma=0} \mathrm{ii}\left(x^{\rho}\right) & =\Omega_{ \pm}\left(\frac{\sqrt{x} \log \log \log x}{\log x}\right)
\end{aligned}
$$

$\pi_{K}(x)$ vs. $\operatorname{li}(x)$

In 1982, Staś, taking only number fields K such that $\zeta_{K}(s)$ has no real zeroes in $(0,1)$, showed unconditionally that,

$$
\begin{array}{ll}
\max _{1 \leq x \leq T}\left(\psi_{K}(s)-x\right)>T^{\beta} \exp \left(-15 \frac{\log T}{\sqrt{\log \log T}}\right) & T \gg 0 \\
\min _{1 \leq x \leq T}\left(\psi_{K}(s)-x\right)<-T^{\beta} \exp \left(-15 \frac{\log T}{\sqrt{\log \log T}}\right) & T \gg 0
\end{array}
$$

where β is the real part of an arbitrary zero of $\zeta_{K}(s)$. Furthermore, in 1988, Kaczorowski and Stas showed that for such K and any $0<\epsilon<1$, the number of sign changes $V_{K}(T)$ of $\psi_{K}(x)-x$ has the following lower bound,

$$
V_{K}(T) \geq(1-\epsilon) \frac{\gamma_{K}}{\pi} \log T \quad T>C(\epsilon)
$$

where γ_{K} is the imaginary part of the lowest zero of $\zeta_{K}(s)$ in the upper half of the critical strip.

Generalized Ideal Classes

Fix a subset \mathfrak{f}_{∞} of real embeddings of K and an ideal \mathfrak{f}_{0} of the ring of integers $\mathcal{O}_{\mathcal{K}}$. Two ideals \mathfrak{a} and \mathfrak{b} coprime to \mathfrak{f}_{0} are called equivalent $\bmod \mathfrak{f}=\left(\mathfrak{f}_{0}, \mathfrak{f}_{\infty}\right)$ if there exist $\alpha, \beta \in \mathcal{O}_{\mathcal{K}}$, such that

$$
\begin{aligned}
\alpha \equiv \beta & \equiv 1\left(\bmod \mathfrak{f}_{0}\right) \\
\alpha \mathfrak{a} & =\beta \mathfrak{b} \\
\sigma(\alpha), \sigma(\beta) & >0, \quad \forall \sigma \in \mathfrak{f}_{\infty}
\end{aligned}
$$

The equivalence classes of ideals coprime to \mathfrak{f} under this relation form a finite group under ideal multiplication called the \mathfrak{f}-ideal class group. It is denoted by $\mathcal{H}(\mathfrak{f})$.
If $\mathfrak{f}_{\infty}=\phi$ and $\mathfrak{f}_{0}=\mathcal{O}_{K}$, then this is just the usual ideal class group. If \mathfrak{f}_{∞} consists of all real embeddings, then this group is called the ray class group mod \mathfrak{f}_{0}. We will denote this by $\mathcal{H}\left(\mathfrak{f}_{0}\right)$. If $K=\mathbb{Q}$ then the ray class group mod $a \mathbb{Z}$ is precisely the group of reduced residue classes mod a.

Prime ideals in f-ideal classes

Let χ be a character on the \mathfrak{f}-ideal class group $\mathcal{H}(\mathfrak{f})$. Then one can define the associated Hecke L-function as,

$$
\zeta(s, \chi)=\sum_{\mathfrak{a}} \frac{\chi(\mathfrak{a})}{N \mathfrak{a}^{s}}
$$

where $\chi(\mathfrak{a})$ is just the value of χ at the class of \mathfrak{a} if \mathfrak{a} is coprime to \mathfrak{f}_{0}, otherwise its 0 . Again, for ray class groups of \mathbb{Q}, these are exactly the Dirichlet L-functions.
For an \mathfrak{f}-ideal class \mathfrak{K}, consider the functions,

$$
\psi(x, \mathfrak{K})=\sum_{\substack{\mathfrak{p}^{k} \in \mathfrak{K} \\ N\left(\mathfrak{p}^{k}\right) \leq x}} \log N \mathfrak{p} \quad \pi(x, \mathfrak{K})=\sum_{\substack{\mathfrak{p} \in \mathfrak{K} \\ N(\mathfrak{p}) \leq x}} 1
$$

It can be shown that,

$$
\psi(x, \mathfrak{K}) \sim \frac{1}{|\mathcal{H}(\mathfrak{f})|} x \quad \pi(x, \mathfrak{K}) \sim \frac{1}{|\mathcal{H}(\mathfrak{f})|} \operatorname{li}(x)
$$

Prime ideals in ray classes $\bmod f$

In 1976, Staś and Wiertelak showed the following correspondence between zero-free regions of some Hecke L-functions and order of growth of the difference $\psi(x, \mathfrak{K})-\psi\left(x, \mathfrak{K}_{0}\right)$: If γ_{1} is the supremum of numbers γ for which,

$$
\psi(x, \mathfrak{K})-\psi\left(x, \mathfrak{K}_{0}\right)=O\left(x e^{-a(\log x)^{\gamma}}\right)
$$

for some positive constant a and if γ_{2} is the infimum of numbers γ for which

$$
\prod_{\chi(\mathfrak{K}) \neq 1} \zeta(s, \chi) \neq 0
$$

in the region

$$
\sigma>1-\frac{b}{(\log |t|)^{\gamma}}, \quad|t|>c
$$

for some positive constants b and c. Then

$$
\gamma_{1}=\frac{1}{1+\gamma_{2}}
$$

Chebotarev density and the Conjugacy Class Race

We know from the Chebotarev density theorem that for a conjugacy class C of the Galois group G of a Galois extension L / K of number fields, we have,

$$
\pi_{C}(x) \sim \frac{|C|}{|G|} \operatorname{li}(x)
$$

where

$$
\pi_{C}(x)=\left\{\mathfrak{p}, \text { prime of } K \mid N(\mathfrak{p}) \leq x, \sigma_{\mathfrak{p}}=C\right\}
$$

where $\sigma_{\mathfrak{p}}$ is the Artin symbol. So one can consider the race between the normalized functions $\frac{|G|}{\left|C_{1}\right|} \pi_{C_{1}}(x)$ and $\frac{|G|}{\left|C_{2}\right|} \pi_{C_{2}}(x)$ for distinct conjugacy classes C_{1} and C_{2}.

Biases in the Ideal Class and the Chebotarev races

In his PhD thesis, Nathan Ng applied the ideas from Rubinstein and Sarnak's paper Chebyshev's Bias to two prime ideal races,

- Prime ideal counting functions for ideal classes.
- Prime ideal counting functions for conjugacy classes of Galois groups.

Rubinstein and Sarnak assume the Linear Independence hypothesis which in particular implies that Dirichlet L -functions do not vanish at $s=\frac{1}{2}$. But in this setting, the analogous Ideal class and Artin L-functions may have zeroes at $s=\frac{1}{2}$, in fact there are known examples of Artin L-functions with a zero at that point. So, he considers the modified linear independence hypothesis for just positive ordinates of the zeroes.

The Ideal Class Race

Consider the ideal class group $\mathcal{H}_{\mathcal{K}}$. For an ideal class \mathfrak{a}, define,

$$
s q^{-1}(\mathfrak{a})=\left\{\mathfrak{b} \in \mathcal{H}_{K} \mid \mathfrak{b}^{2}=\mathfrak{a}\right\}
$$

For ideal classes \mathfrak{a}_{1} and \mathfrak{a}_{2}, N. Ng. derived the following expression,

$$
\begin{aligned}
& \frac{\log x}{\sqrt{x}}\left(\pi_{\mathfrak{a}_{1}}(x)-\pi_{\mathfrak{a}_{2}}(x)\right) \\
& =\frac{\left|s q^{-1}\left(\mathfrak{a}_{2}\right)\right|-\left|s q^{-1}\left(\mathfrak{a}_{1}\right)\right|}{\left|\mathcal{H}_{K}\right|}-\frac{1}{\mathcal{H}_{K}} \sum_{\chi \in \widehat{\mathcal{H}_{K}}, \chi \neq 1}\left(\overline{\chi\left(\mathfrak{a}_{1}\right)}-\overline{\chi\left(\mathfrak{a}_{2}\right)}\right) \sum_{\gamma_{\chi}} \frac{x^{i \gamma_{\chi}}}{\frac{1}{2}+\gamma_{\chi}}+\text { small error terms }
\end{aligned}
$$

If for a character $\chi, L\left(\frac{1}{2}, \chi\right)=0$, then that causes the sum to have non-oscillating terms which cause a bias. Hence the "bias factor" is given by

$$
c(\mathfrak{a})=c_{s q}(\mathfrak{a})+c_{\frac{1}{2}}(\mathfrak{a})
$$

The Ideal Class Race

where

$$
c_{s q}(\mathfrak{a})=\left|s q^{-1}(\mathfrak{a})\right|
$$

is the classical Chebyshev bias and

$$
c_{\frac{1}{2}}(\mathfrak{a})=2 \sum_{\chi \neq 1} \overline{\chi(\mathfrak{a})} n_{\chi}
$$

where n_{χ} is the order of zero of $L(x, \chi)$ at $s=\frac{1}{2}$, is the bias term caused by the vanishing at $\frac{1}{2}$
Finally, he proved a Central Limit Theorem for multi-way ideal class races in imaginary quadratic fields as discriminant tends to ∞, showing that the biases disappear as the discriminant becomes large.

The Conjugacy Class Race

Similar to the Ideal Class race, for a conjugacy class C of $G=G a l(L / K)$ define,

$$
s q^{-1}(C)=\bigcup_{C^{\prime 2} \subset C} C^{\prime}
$$

Again, he derived the following expression,

$$
\begin{aligned}
& \frac{\log x}{\sqrt{x}}\left(\frac{|G|}{\left|C_{1}\right|} \pi_{C_{1}}(x)-\frac{|G|}{\left|C_{2}\right|} \pi_{C_{2}}(x)\right) \\
& =\left(\frac{\left|s q^{-1}\left(C_{2}\right)\right|}{\left|C_{2}\right|}-\frac{\left|s q^{-1}\left(C_{1}\right)\right|}{\left|C_{1}\right|}\right)-\sum_{\chi \neq 1}\left(\overline{\chi\left(C_{1}\right)}-\overline{\chi\left(C_{2}\right)}\right) \sum_{\gamma_{\chi}} \frac{x^{i \gamma_{\chi}}}{\frac{1}{2}+\gamma_{\chi}}+\text { small error terms }
\end{aligned}
$$

Again, we have the bias factor $c(C)$ given by,

$$
c(C)=c_{s q}(C)+c_{\frac{1}{2}}(C), \quad c_{s q}(C)=\frac{\left|s q^{-1}(C)\right|}{|C|}, \quad c_{\frac{1}{2}}(C)=2 \sum_{\chi \neq 1} \overline{\chi(C)} n_{\chi}
$$

The Conjugacy Class Race

He further considered an example of Serre of the Galois extension $\mathbb{Q}\left(\sqrt{\frac{5+\sqrt{5}}{2} \frac{41+\sqrt{5 \cdot 41}}{2}}\right)$ of \mathbb{Q} with Galois group isomorphic to the quaternion group H_{8} which has an Artin L-function which vanishes at $s=\frac{1}{2}$. Let $C_{1}=\{1\}$ and $C_{2}=\{-1\}$. Then he computed

$$
\begin{array}{ll}
c_{s q}\left(C_{1}\right)=2 & c_{s q}\left(C_{2}\right)=6 \\
c_{\frac{1}{2}}\left(C_{1}\right)=4 n & c_{\frac{1}{2}}\left(C_{2}\right)=-4 n
\end{array}
$$

where n is the order of the zero at $s=\frac{1}{2}$ of the Artin L-function mentioned above. Since $n \geq 1$, this shows that the bias due to the zero actually overcomes the classically expected bias. He then verified this by computing,

$$
\frac{1}{\log x} \int_{2}^{x} 1_{\left\{x \geq 2 \mid \pi c_{2}(x)>\pi c_{1}(x)\right\}} \frac{d t}{t}=0.8454 \ldots
$$

for $x=10^{8}$.

The Conjugacy Class Race

Making a similar computation for the Galois extension $\mathbb{Q}(\sqrt{(2+\sqrt{2})(3+\sqrt{3})})$ of \mathbb{Q}, also with Galois group H_{8}, he found,

$$
\frac{1}{\log x} \int_{2}^{x} 1_{\left\{x \geq 2 \mid \pi c_{1}(x)>\pi c_{2}(x)\right\}} \frac{d t}{t}=0.7391 \ldots
$$

again for $x=10^{8}$, and noted that this suggests non-vanishing for the corresponding Artin L-function at $s=\frac{1}{2}$ for this extension.

