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Abstract: In this article, we present a proof of the Riemann-Roch theorem on smooth
irreducible algebraic curves given in the article [Kem77].

1 Introduction

Fix a smooth irreducible algebraic curve C' over an algebraically closed field k. For
an invertible sheaf .Z on C, let # (.£) denote the constant sheaf of rational sections
of £, and Z(Z) denote the quotient sheaf .7 (£)/ . We'd like to show that the
sheaf Z(.Z) is isomorphic to the direct sum of its stalks. Since the question is local,
by restricting ourselves to an affine open set U C C' where .Z is trivial, we can see this
by the lemma:

Lemma 1.1. Let A be a Dedekind domain and K be its field of fractions. Then the
natural map,

Ba—@%a,
m
s an isomorphism.

Proof. Note that the injectivity of the map is clear from the fact that N, A, = A for
a domain A. To show surjectivity, fix a maximal ideal mg of A. Pick t; € A such
that vy, (t1) = 1, where v, denotes the valuation associated to the maximal ideal m.
Consider the finite set P = {m | vy, (t;1) < 0} —{mg}. Let I = | = m¥m(*) and pick
a € I —mol. Now note that for t = a=1t1, v, (t) < 0 for all m # mg, and vy, = 1.

Take a set of representatives S of A/mgy in A. Then any ¢ € K has a power series
expansion of the form ¢ = }° _a,t™" + d, where the sum is finite, a, € S and
d € Ay, Set cg = Y, gant™. Then ¢y has image ¢ in K/A,,, and 0 in other
components, since for m # my, v, (co) > 0. Hence, the map is surjective. |

From this we see that Z(.Z) is a flasque sheaf, and hence has trivial cohomology.
Now pick an effective divisor D on C. We have inclusions . — Z(D) — # (£).
Taking quotients by .Z, we get the following diagram with exact rows:

0 — & — H(¥) — P(¥) —0

[ T

0 — ¢ — Z(D) — Z(D)|, — 0 (®p)



Note that the sheaf Z(D)|,, is supported at the support of D, and hence also has
trivial cohomology. Taking global sections, we get:

0 — I(0C,%) — I'(C, . #(¥) — T'(C,#¥)) — H(C,¥) ——— 0

I I | I I

0 — I'(C, %) — I(C,Z (D)) — T(C, Z(D)|p) o, HY(C,¥) — HYC,%(D)) — 0

where the vertical maps are all induced by the above inclusions. Some key observations:
1. For increasing divisors D, the sequence below limits to the sequence above.
2. In particular, every class in H(C,.%) is in the image of p for some D.

3. If D = Dy + D5, where D and Dy are effective divisors with disjoint supports,
[(C, Z(D)|p) = T(C, £(D1)|p,) ®T(C, £(D2)|p,), and hence 6p can be iden-
tified with (5[)1 & (5[)2.

Theorem 1.2. HY(C,.#) = 0 iff for any effective divisor E and a point D of C,
dim(T'(C, Z(E+ D))/T(C,Z(E)) = 1.

Proof. By observation 1, we see that H'(C,.#) vanishes iff 6p is zero for all D. Mean-
while, for a given D, dp = 0 iff dimy(I'(C, Z(D))/T(C,Z)) = dim;, I'(C, £ (D)|p) =
deg(D). Therefore, we get H'(C,.%) = 0 iff for all effective divisors D,

dimy (I'(C, Z(D))/T'(C,Z)) = deg(D). This is equivalent to the condition in the state-
ment of the theorem by simple induction. |

Using theorem 1.2, we can reduce the study of the sequence ¢p to the case where D is
just a point, by replacing .Z by Z(FE).

2 Globalizing the sequence ¢p
We begin with the following sequence on C' x C":
0 — Ocxc — Ocxc(A) — Ocxc(A)|y —> 0 (1)
We claim that this is the globalization of the sequence,
0 — Oc — Oc(D) — Oc(D)|, — 0 (2)

where D is a point of C. By that we mean that:

Theorem 2.1. If fp : C — C x C is the map given by w1 o fp = idc and me o fp
is the constant map to the point D, the pullback of the sequence 1 by fp gives us the
sequence 2.



Proof. On the open set U = A€, the sequence 1 is just,

0 >ﬁU ﬁU 0 > 0

And thus the pullback by fp does in fact give the sequence (2) restricted to fBl(U ) =
C — D. Thus we only need to check the pullback sequence on a neighbourhood of D.

Take an affine neighbourhood W = Spec(A) of D in C. Then, V. =W x W = Spec(B)
is an affine neighbourhood of fp(D) = (D, D), where B = A ®;, A. Let pa and pp
be the prime ideals of B associated to the irreducible subsets VN A and VN C x D,
respectively. Then, pa is the kernel of the diagonal map B = AR A — A, and pp is the
kernel of the map given by B=A® A - A® A/mp = A, where mp is the maximal
ideal of A associated with the point D. Meanwhile, let m(p py be the maximal ideal of
B associated to the point (D, D). We know that pa +pp € mp p) Then we have the
diagram,

B/pa

|

B —— B/pa ®5 B/pp —= B/(pa + pp)

B/pp

where the map h is the map induced by the universal property of the tensor product.
Clearly, h is surjective. But B/pa ®p B/pp = k, therefore B/(pa + pp) = k, and
hence pa + pp = m(p p). This continues to hold after localizing at the m(p p), and
hence we get, p(p,p),a + P(p,p),cxD = Mcxco,(p,p)s Where p(p pya = PAOcxc,(D,D)
and p(p,py,cxp = PpDOcxc,(p,p), are the prime ideals of the local ring Ocyc (p,py of
C x C at (D, D) corresponding to A and C' x D, respectively.
C x C is smooth, and hence Ocyc p,p) is a UFD. In particular pp pya = (ta)-
Now, the map induced by fp on the local rings, f5, : Ocxc(p,py — Oc,p, is just
the quotient by p(p p),cxp map. Therefore, image of p(p p) A and in particular tp =
fh(ta) generate the maximal ideal m¢c p of O¢ p.
The rational function ¢ is such that at all the divisors through (D, D), it has precisely
just a simple zero across A. Removing the divisors other than A from the support of
div(ta), we get an open set V1 containing (D, D), such that div(f)]y, = A. Considering
tp = fp(ta) to be a regular function on Uy = fBl(Vl), we find that ¢p has a simple
zero at D (since it generates mc p). Removing the points of the support of div(tp)
other than D from Uj, and their images from V;, we get open neighbourhood Vs of
(D, D), such that div(ta)ly, = A, and div(tp)|,, = D, where Uy = f;,'(V2), ie. A
and D are principal divisors on V5 and Us respectively.
Coming back to our sequences, we see that when restricted to Vs, the sequence 1
becomes:

0 — Oy, — tglﬁvz — tglﬁvz/ﬁvz — 0



which when pulled back via fp, becomes:
00— ﬁUQ — tBlﬁ[b — tBlﬁU2/ﬁU2 — 0

which is the same as the sequence 2 restricted to Us. Since U and Us cover C, we are
done. |

Tensoring the sequence 1 by 77.Z, we get:
0 — 1Z — 1L (A) — 1L QR Ocxc(A)|, — 0

whose pullback via fp is the sequence ®p of section 1. Using the adjunction of pullback
and pushforward, we get the vertical maps of the diagram:

0 — 1l —— 1 Z(A) —— 1L ® Ocxc(A)|y — 0

| ! | @

0 — (fp)«Z — (/)L (D) —— (fp)+ L(D)|p —— 0

where the bottom row is exact since fp is affine (it is a closed immersion), which
makes (fp).« exact. We now want to take the direct image of this diagram via s, but
before that, a lemma for computation of higher direct images.

Lemma 2.2. Let f : X — Y be a separated morphism of finite type of noetherian
schemes, u : Y' — Y be a flat morphism of noetherian schemes and g : X' = X xyY' —
Y’ be the base extension of f via u. Let .F be a quasi-coherent sheaf on X.

X s X

b

Yy 25 Y
Then for i > 0 there are natural isomorphisms

W R f.(F) = Rlg,(v*F)
Proof. [Har77, Theorem I11.9.3] ]
Using the lemma for f = u = the structure morphism C' — Spec k, we get,
Riﬂg*(ﬂlﬁ) = HZ(C, ﬁ) Rk Oc

Also note that 73 o fp is the constant map to the point D. Hence, R'(m3 o fp)«(.F)
is the skyscraper sheaf associated to the module H'(C,.#) supported at D. Also, we
have natural isomorphisms:

Mo (1L © Ocxc(D)|a) = m2u(m]L @ AA(O0xc(D)]a))
ToxAu(A*(17.2) @ A*(Ocxc(A)|A)))
L AN (Ocxc(A)|A)

= 205!

4



Finally we can take the pushforward of diagram 3 via ms:

0 — I(C,.L) @ O — mou(mt¥) —2— L0057 — 2 HY(C,Z) & Oc

| | ! |

0 —— ipD(C,. L) —— ipD(C, Z(D)) L2 ip,(C, Z(D)|p) —2 ip.HY(C, 2)

Here, ip is the inclusion of the point D into C'. The sequence ¢ is the globalization of
the sequence ¢p; Pulling back the diagram via ¢p gives us the sequence ¢p in bottom
rows, but all the vertical maps after pulling back are isomorphisms, so we get that
¢p = i, (¢). In particular, §p = 0 iff pp is surjective, which is true iff p is surjective
on the stalk at D (by Nakayama’s lemma) which is true iff § is zero on the stalk at D.
Therefore we have:

Theorem 2.3. § vanishes at D iff dp is 0.

3 Finite dimensionality of the cohomology groups

Lemma 3.1. For any non-zero effective divisor E on C, H'(C,Q¢(E)) = 0.

Proof. Set £ = Q¢ (F) for some non-zero effective divisor F in the sequences above.
L @05 = 0c(E). H(C,Qc(E))® Oc = 647, where r = dimy H'(C, Qc(E)). If §
is nonzero, r > 0, and hence by composing § with one of the projections, we will get a
nonzero map Oc(E) — O¢, which corresponds to a nonzero global section of O¢(—FE),
which do not exist (There is no non-zero regular function which vanishes only along
E). Therefore § must be zero, which means dp is zero for all D. But that gives us
dimy I'(C, Qo (E + D)) /T(C,Qc(E)) = 1, for all non-zero effective divisors E, and all
points D of C'. Thus by theorem 1.2, we are done. |

Theorem 3.2. Let £ be an invertible sheaf on C. Then I'(C,.#) and H*(C,.%) are
finite dimensional. Moreover, if we set the Euler characteristic of £ to be x(£) =
dimy I'(C, %) — dimy, HY(C, %), then

x(Z)=1—g+deg(2)

where g = dimg HY(C, O¢) is the genus of C, and deg(¥£) = deg(div(s)) for any
rational section s of L.

Proof. We know that for any rational section s of ., the map O (D) — £, given by
f+— f*sis an isomorphism.

First we show the finite dimensionality of I'(C,.%). If I'(C,.Z) # 0, £ has a global
section s. D = div(s) will be an effective divisor, since s is globally defined, and
hence .Z = Oc(D) for an effective divisor D. But by the sequence ¢p, we know that
dimy I'(C, 0c(D))/T(C, O¢) < deg(D). But dimy I'(C, O¢) = 1, which gives us the
finite dimensionality of I'(C, 0¢(D)) = I'(C,Z). To see the finite dimensionality of



H'(C, %), observe that for any effective divisor E and invertible sheaf ., the sequence
¢p tells us that £ has finite dimensional cohomology iff Z(F) does. Furthermore, if
the cohomologies are finite dimensional, we have,

dim;, I'(C, Z(E)) — dim; I'(C, £) + dimy, HY(C, ) — dimy, HY(C, £ (E))
=dim;, I'(C, Z(F)|p) = deg(F)

that is, x(Z(F)) = x(Z) + deg(F). Writing any divisor D as Dy — Da, where D;
and D are effective, and using the result for effective divisors twice, we get the same
result for all divisors.// By the above discussion and the previous lemma, we know
that there exists an invertible sheaf .# with finite dimensional cohomology groups.
Now, .# = O(D,) for a divisor D; of some rational section of .#. Thus ¢ has finite
dimensional cohomology groups. But as mentioned in the beginning of the proof, any
invertible sheaf . = 0 (D), which gives us that £ has finite dimensional cohomologies
and that x(£) = x(0c(D)) = x(Oc) + deg(D) = 1 — g + deg(L). [ ]

4 The canonical class

First, a result on vanishing of cohomologies for sheafs with high degree.

Lemma 4.1. Let £ be an invertible sheaf on C with degree strictly larger than deg(Q¢).
Then, H'(C, %) = 0.

Proof. This is essentially a strengthening of lemma 3.1. The same proof goes through,
except in this case there is no morphism from A (E) = Z(E) @ Q&' — 0¢ for an
effective divisor F, because .4 (E) has positive degree, hence a morphism A4 — O¢
represents a regular section of A4 ®~! which has negative degree. But an invertible
sheaf of negative degree is isomorphic to O¢(D) for a divisor D of negative degree,
which doesn’t have any regular sections. |

Theorem 4.2. H'(C,Q¢) is one dimensional. In fact there exists a canonical isomor-

phism from k = HY(C,Q¢).

Proof. By theorem 3.2, we know that for invertible sheaves .Z of low enough degree,
H'(C, %) is non-trivial. Meanwhile, by the previous lemma, we know that . with
sufficiently large degree has trivial cohomology.

Let . be an invertible sheaf of maximal possible degree with H!(C,.#) # 0. Then for
any point D, I'(C, M (D)) = 0, that is for & = .#, dp is surjective for all points D. This
means that 0 < dimy H'(C,.#) < dim I'(C, #(D)|p) = 1, i.e. dimy H(C,.#) = 1.
Since dp is surjective for all D, § is surjective on the stalks at all points D, which
means ¢ is an isomorphism, because the stalks at any point D of .# ® Q%_l and
HY (O, #)®y,0c ~ O¢ are both free modules of rank 1 over the local ring at D, and any
surjective map between such modules is an isomorphism. Thus, we get .# ®Q%_1 ~ Oc,
or equivalently, .# ~ Q¢



To get the canonical map, observe that ¢ itself satisfies the properties required of .,
in particular for .Z = Q¢ as well, the map ¢ will be an isomorphism. But

§: 0020020 — HY(C,Q0)

Taking global sections, we get the canonical isomorphism. |

5 Serre duality and the Riemann-Roch theorem

Given a section s € I'(C, Qe ® £®71), we get amap s®1 : £ — QoL 1.7 = Qg,
which induces a map from H'(C,.%) — H'(C,Q¢). In particular we get a pairing

N(C, Q@29 Y x H(C, %) — H(C,Q0) = k
which we denote as the cup product U.

Theorem 5.1. Serre duality

U:T(C,Qc 2% ) x HY(C, %) — H' (C,Q0) = k
is a perfect pairing.

Proof. We are done if we show that the map f : I'(C,Qc ® £ — HY(C,Z)V,
given by s — co (Us), is an isomorphism, where ¢ : HY(C,Q¢) — k is the canonical
isomorphism.

Observe that the process of constructing the sequence ¢ and in particular the map ¢ is
functorial in .Z. Pick s € T'(C, Q¢ ® .£%~!). We have the commutative diagram:

5(Z) - L5 — HY(C,Z) @ Oc
lxs J/US@l
(Q0) : O ——— HI(C,Qc) Rk Oc

Define a map n : HY(C,£)V — I'(C,Q0c ® £®71), given by t — (t® 1) 0 §(Z).
Then from the diagram above, it can be seen that, s = 6(Q¢) ' o (Us® 1) 0 (L) =
(c®1)o((Us) ®1)0d(Z) = ((co(Us)) ®1) 0 (L) = no f(s). In particular, f is
injective, 7 is surjective, and no f = id. If we show 7 is also injective, then n = f~!
and we will be done.

Let t € ker(n). Then (t ® 1) 0 §(.Z) = 0. For each point D in C, pulling back
via ip : Spec(k(D)) — C gives us t o dp = 0. Pick a large n, specifically satisfy-
ing n + deg(¥) > deg(Q). Pick n distinct points Dy, Do, ..., D, on C. For each
1 <r <mn,todp, =0, which means that t o ép = 0 for D = >, D,. Since
deg(Z(D)) = deg(L) + deg(D) > deg(Qc), by lemma 4.1, H'(C, . Z (D)) = 0. Look-
ing at sequence ¢p, this means that dp is surjective, and hence ¢ = 0. This shows that
7 is injective and completes the proof. |



Theorem 5.2. Riemann-Roch theorem
For any invertible sheaf £ on C,

dimy, T'(C, &) — dim, T(C, Qe @ L7 =1 — g + deg(2)
Proof. By Serre duality, dim;, I'(C, Q¢ @ £%~1) = dimy, H'(C,.%). Therefore we have,
dim;, T'(C, £) — dim, T(C, Qe @ £%71) = dim T(C, %) — dimy H(C, 2)

= x(¥)
= 1— g+ deg(Z) by theorem 3.2

Corollary 5.2.1.
1. dim I'(C, Q) =g
2. deg(2C) =29 —2
Proof.

1. Apply Riemann-Roch theorem for . = 0. Since we know dim I'(C, O0¢) = 1,
deg(0¢) =0 and Q¢ ® ﬁgil = Q¢, we immediately get dimy I'(C, Q¢) = g.

2. Apply Riemann-Roch theorem for .£ = Q¢. Since we know dimy I'(C, Q¢) = g,
Qe ® Q%_l = O¢ and dim, I'(C, O¢) = 1, we immediately get deg(Q¢) = 29 — 2.
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