The Riemann-Roch Theorem

Devang Agarwal

Abstract

In this article, we present a proof of the Riemann-Roch theorem on smooth irreducible algebraic curves given in the article [Kem77].

1 Introduction

Fix a smooth irreducible algebraic curve C over an algebraically closed field k. For an invertible sheaf \mathscr{L} on C, let $\mathscr{K}(\mathscr{L})$ denote the constant sheaf of rational sections of \mathscr{L}, and $\mathscr{P}(\mathscr{L})$ denote the quotient sheaf $\mathscr{K}(\mathscr{L}) / \mathscr{L}$. We'd like to show that the sheaf $\mathscr{P}(\mathscr{L})$ is isomorphic to the direct sum of its stalks. Since the question is local, by restricting ourselves to an affine open set $U \subseteq C$ where \mathscr{L} is trivial, we can see this by the lemma:

Lemma 1.1. Let A be a Dedekind domain and K be its field of fractions. Then the natural map,

$$
K / A \rightarrow \bigoplus_{m}^{K / A_{m}}
$$

is an isomorphism.
Proof. Note that the injectivity of the map is clear from the fact that $\cap_{m} A_{m}=A$ for a domain A. To show surjectivity, fix a maximal ideal m_{0} of A. Pick $t_{1} \in A$ such that $v_{m_{0}}\left(t_{1}\right)=1$, where v_{m} denotes the valuation associated to the maximal ideal m. Consider the finite set $P=\left\{m \mid v_{m}\left(t_{1}^{-1}\right)<0\right\}-\left\{m_{0}\right\}$. Let $I=\prod_{m \in P} m^{v_{m}\left(t_{1}\right)}$ and pick $a \in I-m_{0} I$. Now note that for $t=a^{-1} t_{1}, v_{m}(t) \leq 0$ for all $m \neq m_{0}$, and $v_{m_{0}}=1$.
Take a set of representatives S of A / m_{0} in A. Then any $c \in K$ has a power series expansion of the form $c=\sum_{n<0} a_{n} t^{-n}+d$, where the sum is finite, $a_{n} \in S$ and $d \in A_{m_{0}}$. Set $c_{0}=\sum_{n<0} a_{n} t^{-n}$. Then c_{0} has image c in $K / A_{m_{0}}$ and 0 in other components, since for $m \neq m_{0}, v_{m}\left(c_{0}\right) \geq 0$. Hence, the map is surjective.

From this we see that $\mathscr{P}(\mathscr{L})$ is a flasque sheaf, and hence has trivial cohomology.
Now pick an effective divisor D on C. We have inclusions $\mathscr{L} \hookrightarrow \mathscr{L}(D) \hookrightarrow \mathscr{K}(\mathscr{L})$. Taking quotients by \mathscr{L}, we get the following diagram with exact rows:

Note that the sheaf $\left.\mathscr{L}(D)\right|_{D}$ is supported at the support of D, and hence also has trivial cohomology. Taking global sections, we get:
$\left(\phi_{D}\right)$

where the vertical maps are all induced by the above inclusions. Some key observations:

1. For increasing divisors D, the sequence below limits to the sequence above.
2. In particular, every class in $H^{1}(C, \mathscr{L})$ is in the image of δ_{D} for some D.
3. If $D=D_{1}+D_{2}$, where D_{1} and D_{2} are effective divisors with disjoint supports, $\Gamma\left(C,\left.\mathscr{L}(D)\right|_{D}\right) \cong \Gamma\left(C,\left.\mathscr{L}\left(D_{1}\right)\right|_{D_{1}}\right) \oplus \Gamma\left(C,\left.\mathscr{L}\left(D_{2}\right)\right|_{D_{2}}\right)$, and hence δ_{D} can be identified with $\delta_{D_{1}} \oplus \delta_{D_{2}}$.

Theorem 1.2. $H^{1}(C, \mathscr{L})=0$ iff for any effective divisor E and a point D of C, $\operatorname{dim}_{k}(\Gamma(C, \mathscr{L}(E+D)) / \Gamma(C, \mathscr{L}(E))=1$.

Proof. By observation 1, we see that $H^{1}(C, \mathscr{L})$ vanishes iff δ_{D} is zero for all D. Meanwhile, for a given $D, \delta_{D}=0$ iff $\operatorname{dim}_{k}(\Gamma(C, \mathscr{L}(D)) / \Gamma(C, \mathscr{L}))=\operatorname{dim}_{k} \Gamma\left(C,\left.\mathscr{L}(D)\right|_{D}\right)=$ $\operatorname{deg}(D)$. Therefore, we get $H^{1}(C, \mathscr{L})=0$ iff for all effective divisors D, $\operatorname{dim}_{k}(\Gamma(C, \mathscr{L}(D)) / \Gamma(C, \mathscr{L}))=\operatorname{deg}(D)$. This is equivalent to the condition in the statement of the theorem by simple induction.

Using theorem 1.2 , we can reduce the study of the sequence ϕ_{D} to the case where D is just a point, by replacing \mathscr{L} by $\mathscr{L}(E)$.

2 Globalizing the sequence ϕ_{D}

We begin with the following sequence on $C \times C$:

$$
\begin{equation*}
\left.0 \longrightarrow \mathscr{O}_{C \times C} \longrightarrow \mathscr{O}_{C \times C}(\Delta) \longrightarrow \mathscr{O}_{C \times C}(\Delta)\right|_{\Delta} \longrightarrow 0 \tag{1}
\end{equation*}
$$

We claim that this is the globalization of the sequence,

$$
\begin{equation*}
\left.0 \longrightarrow \mathscr{O}_{C} \longrightarrow \mathscr{O}_{C}(D) \longrightarrow \mathscr{O}_{C}(D)\right|_{D} \longrightarrow 0 \tag{2}
\end{equation*}
$$

where D is a point of C. By that we mean that:
Theorem 2.1. If $f_{D}: C \rightarrow C \times C$ is the map given by $\pi_{1} \circ f_{D}=i d_{C}$ and $\pi_{2} \circ f_{D}$ is the constant map to the point D, the pullback of the sequence 1 by f_{D} gives us the sequence 2.

Proof. On the open set $U=\Delta^{c}$, the sequence 1 is just,

$$
0 \longrightarrow \mathscr{O}_{U} \longrightarrow \mathscr{O}_{U} \longrightarrow 0 \longrightarrow 0
$$

And thus the pullback by f_{D} does in fact give the sequence (2) restricted to $f_{D}^{-1}(U)=$ $C-D$. Thus we only need to check the pullback sequence on a neighbourhood of D.

Take an affine neighbourhood $W=\operatorname{Spec}(A)$ of D in C. Then, $V=W \times W=\operatorname{Spec}(B)$ is an affine neighbourhood of $f_{D}(D)=(D, D)$, where $B=A \otimes_{k} A$. Let \mathfrak{p}_{Δ} and \mathfrak{p}_{D} be the prime ideals of B associated to the irreducible subsets $V \cap \Delta$ and $V \cap C \times D$, respectively. Then, \mathfrak{p}_{Δ} is the kernel of the diagonal map $B=A \otimes A \rightarrow A$, and \mathfrak{p}_{D} is the kernel of the map given by $B=A \otimes A \rightarrow A \otimes A / m_{D} \cong A$, where m_{D} is the maximal ideal of A associated with the point D. Meanwhile, let $m_{(D, D)}$ be the maximal ideal of B associated to the point (D, D). We know that $\mathfrak{p}_{\Delta}+\mathfrak{p}_{D} \subseteq m_{(D, D)}$ Then we have the diagram,

where the map h is the map induced by the universal property of the tensor product. Clearly, h is surjective. But $B / \mathfrak{p}_{\Delta} \otimes_{B} B / \mathfrak{p}_{D} \cong k$, therefore $B /\left(\mathfrak{p}_{\Delta}+\mathfrak{p}_{D}\right) \cong k$, and hence $\mathfrak{p}_{\Delta}+\mathfrak{p}_{D}=m_{(D, D)}$. This continues to hold after localizing at the $m_{(D, D)}$, and hence we get, $\mathfrak{p}_{(D, D), \Delta}+\mathfrak{p}_{(D, D), C \times D}=m_{C \times C,(D, D)}$, where $\mathfrak{p}_{(D, D), \Delta}=\mathfrak{p}_{\Delta} \mathscr{O}_{C \times C,(D, D)}$ and $\mathfrak{p}_{(D, D), C \times D}=\mathfrak{p}_{D} \mathscr{O}_{C \times C,(D, D)}$, are the prime ideals of the local ring $\mathscr{O}_{C \times C,(D, D)}$ of $C \times C$ at (D, D) corresponding to Δ and $C \times D$, respectively.
$C \times C$ is smooth, and hence $\mathscr{O}_{C \times C,(D, D)}$ is a UFD. In particular $\mathfrak{p}_{(D, D), \Delta}=\left(t_{\Delta}\right)$. Now, the map induced by f_{D} on the local rings, $f_{D}^{*}: \mathscr{O}_{C \times C,(D, D)} \rightarrow \mathscr{O}_{C, D}$, is just the quotient by $\mathfrak{p}_{(D, D), C \times D}$ map. Therefore, image of $\mathfrak{p}_{(D, D), \Delta}$ and in particular $t_{D}=$ $f_{D}^{*}\left(t_{\Delta}\right)$ generate the maximal ideal $m_{C, D}$ of $\mathscr{O}_{C, D}$.
The rational function t_{Δ} is such that at all the divisors through (D, D), it has precisely just a simple zero across Δ. Removing the divisors other than Δ from the support of $\operatorname{div}\left(t_{\Delta}\right)$, we get an open set V_{1} containing (D, D), such that $\left.\operatorname{div}(f)\right|_{V_{1}}=\Delta$. Considering $t_{D}=f_{D}^{*}\left(t_{\Delta}\right)$ to be a regular function on $U_{1}=f_{D}^{-1}\left(V_{1}\right)$, we find that t_{D} has a simple zero at D (since it generates $m_{C, D}$). Removing the points of the support of $\operatorname{div}\left(t_{D}\right)$ other than D from U_{1}, and their images from V_{1}, we get open neighbourhood V_{2} of (D, D), such that $\left.\operatorname{div}\left(t_{\Delta}\right)\right|_{V_{2}}=\Delta$, and $\left.\operatorname{div}\left(t_{D}\right)\right|_{U_{2}}=D$, where $U_{2}=f_{D}^{-1}\left(V_{2}\right)$, i.e. Δ and D are principal divisors on V_{2} and U_{2} respectively.
Coming back to our sequences, we see that when restricted to V_{2}, the sequence 1 becomes:

$$
0 \longrightarrow \mathscr{O}_{V_{2}} \longrightarrow t_{\Delta}^{-1} \mathscr{O}_{V_{2}} \longrightarrow t_{\Delta}^{-1} \mathscr{O}_{V_{2}} / \mathscr{O}_{V_{2}} \longrightarrow 0
$$

which when pulled back via f_{D}, becomes:

$$
0 \longrightarrow \mathscr{O}_{U_{2}} \longrightarrow t_{D}^{-1} \mathscr{O}_{U_{2}} \longrightarrow t_{D}^{-1} \mathscr{O}_{U_{2}} / \mathscr{O}_{U_{2}} \longrightarrow 0
$$

which is the same as the sequence 2 restricted to U_{2}. Since U and U_{2} cover C, we are done.

Tensoring the sequence 1 by $\pi_{1}^{*} \mathscr{L}$, we get:

$$
\left.0 \longrightarrow \pi_{1}^{*} \mathscr{L} \longrightarrow \pi_{1}^{*} \mathscr{L}(\Delta) \longrightarrow \pi_{1}^{*} \mathscr{L} \otimes \mathscr{O}_{C \times C}(\Delta)\right|_{\Delta} \longrightarrow 0
$$

whose pullback via f_{D} is the sequence Φ_{D} of section 1 . Using the adjunction of pullback and pushforward, we get the vertical maps of the diagram:

where the bottom row is exact since f_{D} is affine (it is a closed immersion), which makes $\left(f_{D}\right)_{*}$ exact. We now want to take the direct image of this diagram via π_{2}, but before that, a lemma for computation of higher direct images.

Lemma 2.2. Let $f: X \rightarrow Y$ be a separated morphism of finite type of noetherian schemes, $u: Y^{\prime} \rightarrow Y$ be a flat morphism of noetherian schemes and $g: X^{\prime}=X \times_{Y} Y^{\prime} \rightarrow$ Y^{\prime} be the base extension of f via u. Let \mathscr{F} be a quasi-coherent sheaf on X.

Then for $i \geq 0$ there are natural isomorphisms

$$
u^{*} R^{i} f_{*}(\mathscr{F}) \cong R^{i} g_{*}\left(v^{*} \mathscr{F}\right)
$$

Proof. [Har77, Theorem III.9.3]
Using the lemma for $f=u=$ the structure morphism $C \rightarrow$ Spec k, we get,

$$
R^{i} \pi_{2 *}\left(\pi_{1} \mathscr{F}\right) \cong H^{i}(C, \mathscr{F}) \otimes_{k} \mathscr{O}_{C}
$$

Also note that $\pi_{2} \circ f_{D}$ is the constant map to the point D. Hence, $R^{i}\left(\pi_{2} \circ f_{D}\right)_{*}(\mathscr{F})$ is the skyscraper sheaf associated to the module $H^{i}(C, \mathscr{F})$ supported at D. Also, we have natural isomorphisms:

$$
\begin{aligned}
\pi_{2 *}\left(\left.\pi_{1}^{*} \mathscr{L} \otimes \mathscr{O}_{C \times C}(\Delta)\right|_{\Delta}\right) & =\pi_{2 *}\left(\pi_{1}^{*} \mathscr{L} \otimes \Delta_{*} \Delta^{*}\left(\left.\mathscr{O}_{C \times C}(\Delta)\right|_{\Delta}\right)\right) \\
& \left.=\pi_{2 *} \Delta_{*}\left(\Delta^{*}\left(\pi_{1}^{*} \mathscr{L}\right) \otimes \Delta^{*}\left(\left.\mathscr{O}_{C \times C}(\Delta)\right|_{\Delta}\right)\right)\right) \\
& =\mathscr{L} \otimes \Delta^{*}\left(\left.\mathscr{O}_{C \times C}(\Delta)\right|_{\Delta}\right) \\
& =\mathscr{L} \otimes \Omega_{C}^{\otimes-1}
\end{aligned}
$$

Finally we can take the pushforward of diagram 3 via π_{2} :

Here, i_{D} is the inclusion of the point D into C. The sequence ϕ is the globalization of the sequence ϕ_{D}; Pulling back the diagram via i_{D} gives us the sequence ϕ_{D} in bottom rows, but all the vertical maps after pulling back are isomorphisms, so we get that $\phi_{D}=i_{D}^{*}(\phi)$. In particular, $\delta_{D}=0$ iff p_{D} is surjective, which is true iff p is surjective on the stalk at D (by Nakayama's lemma) which is true iff δ is zero on the stalk at D. Therefore we have:

Theorem 2.3. δ vanishes at D iff δ_{D} is 0 .

3 Finite dimensionality of the cohomology groups

Lemma 3.1. For any non-zero effective divisor E on $C, H^{1}\left(C, \Omega_{C}(E)\right)=0$.
Proof. Set $\mathscr{L}=\Omega_{C}(E)$ for some non-zero effective divisor E in the sequences above. $\mathscr{L} \otimes \Omega_{C}^{\otimes-1}=\mathscr{O}_{C}(E) . H^{1}\left(C, \Omega_{C}(E)\right) \otimes \mathscr{O}_{C} \cong \mathscr{O}_{C}^{\oplus r}$, where $r=\operatorname{dim}_{k} H^{1}\left(C, \Omega_{C}(E)\right)$. If δ is nonzero, $r>0$, and hence by composing δ with one of the projections, we will get a nonzero map $\mathscr{O}_{C}(E) \rightarrow \mathscr{O}_{C}$, which corresponds to a nonzero global section of $\mathscr{O}_{C}(-E)$, which do not exist (There is no non-zero regular function which vanishes only along $E)$. Therefore δ must be zero, which means δ_{D} is zero for all D. But that gives us $\operatorname{dim}_{k} \Gamma\left(C, \Omega_{C}(E+D)\right) / \Gamma\left(C, \Omega_{C}(E)\right)=1$, for all non-zero effective divisors E, and all points D of C. Thus by theorem 1.2 , we are done.

Theorem 3.2. Let \mathscr{L} be an invertible sheaf on C. Then $\Gamma(C, \mathscr{L})$ and $H^{1}(C, \mathscr{L})$ are finite dimensional. Moreover, if we set the Euler characteristic of \mathscr{L} to be $\chi(\mathscr{L})=$ $\operatorname{dim}_{k} \Gamma(C, \mathscr{L})-\operatorname{dim}_{k} H^{1}(C, \mathscr{L})$, then

$$
\chi(\mathscr{L})=1-g+\operatorname{deg}(\mathscr{L})
$$

where $g=\operatorname{dim}_{k} H^{1}\left(C, \mathscr{O}_{C}\right)$ is the genus of C, and $\operatorname{deg}(\mathscr{L})=\operatorname{deg}(\operatorname{div}(s))$ for any rational section s of \mathscr{L}.

Proof. We know that for any rational section s of \mathscr{L}, the map $\mathscr{O}_{C}(D) \rightarrow \mathscr{L}$, given by $f \mapsto f * s$ is an isomorphism.
First we show the finite dimensionality of $\Gamma(C, \mathscr{L})$. If $\Gamma(C, \mathscr{L}) \neq 0, \mathscr{L}$ has a global section s. $D=\operatorname{div}(s)$ will be an effective divisor, since s is globally defined, and hence $\mathscr{L} \cong \mathscr{O}_{C}(D)$ for an effective divisor D. But by the sequence ϕ_{D}, we know that $\operatorname{dim}_{k} \Gamma\left(C, \mathscr{O}_{C}(D)\right) / \Gamma\left(C, \mathscr{O}_{C}\right) \leq \operatorname{deg}(D)$. But $\operatorname{dim}_{k} \Gamma\left(C, \mathscr{O}_{C}\right)=1$, which gives us the finite dimensionality of $\Gamma\left(C, \mathscr{O}_{C}(D)\right)=\Gamma(C, \mathscr{L})$. To see the finite dimensionality of
$H^{1}(C, \mathscr{L})$, observe that for any effective divisor E and invertible sheaf \mathscr{L}, the sequence ϕ_{D} tells us that \mathscr{L} has finite dimensional cohomology iff $\mathscr{L}(E)$ does. Furthermore, if the cohomologies are finite dimensional, we have,

$$
\begin{gathered}
\operatorname{dim}_{k} \Gamma(C, \mathscr{L}(E))-\operatorname{dim}_{k} \Gamma(C, \mathscr{L})+\operatorname{dim}_{k} H^{1}(C, \mathscr{L})-\operatorname{dim}_{k} H^{1}(C, \mathscr{L}(E)) \\
=\operatorname{dim}_{k} \Gamma\left(C,\left.\mathscr{L}(E)\right|_{E}\right)=\operatorname{deg}(E)
\end{gathered}
$$

that is, $\chi(\mathscr{L}(E))=\chi(\mathscr{L})+\operatorname{deg}(E)$. Writing any divisor D as $D_{1}-D_{2}$, where D_{1} and D_{2} are effective, and using the result for effective divisors twice, we get the same result for all divisors.// By the above discussion and the previous lemma, we know that there exists an invertible sheaf \mathscr{M} with finite dimensional cohomology groups. Now, $\mathscr{M} \cong \mathscr{O}\left(D_{1}\right)$ for a divisor D_{1} of some rational section of \mathscr{M}. Thus \mathscr{O}_{C} has finite dimensional cohomology groups. But as mentioned in the beginning of the proof, any invertible sheaf $\mathscr{L} \cong \mathscr{O}_{C}(D)$, which gives us that \mathscr{L} has finite dimensional cohomologies and that $\chi(\mathscr{L})=\chi\left(\mathscr{O}_{C}(D)\right)=\chi\left(\mathscr{O}_{C}\right)+\operatorname{deg}(D)=1-g+\operatorname{deg}(\mathscr{L})$.

4 The canonical class

First, a result on vanishing of cohomologies for sheafs with high degree.
Lemma 4.1. Let \mathscr{L} be an invertible sheaf on C with degree strictly larger than $\operatorname{deg}\left(\Omega_{C}\right)$. Then, $H^{1}(C, \mathscr{L})=0$.

Proof. This is essentially a strengthening of lemma 3.1. The same proof goes through, except in this case there is no morphism from $\mathscr{N}(E)=\mathscr{L}(E) \otimes \Omega_{C}^{\otimes-1} \rightarrow \mathscr{O}_{C}$ for an effective divisor E, because $\mathscr{N}(E)$ has positive degree, hence a morphism $\mathscr{N} \rightarrow \mathscr{O}_{C}$ represents a regular section of $\mathscr{N}^{\otimes-1}$, which has negative degree. But an invertible sheaf of negative degree is isomorphic to $\mathscr{O}_{C}(D)$ for a divisor D of negative degree, which doesn't have any regular sections.

Theorem 4.2. $H^{1}\left(C, \Omega_{C}\right)$ is one dimensional. In fact there exists a canonical isomorphism from $k \cong H^{1}\left(C, \Omega_{C}\right)$.

Proof. By theorem 3.2, we know that for invertible sheaves \mathscr{L} of low enough degree, $H^{1}(C, \mathscr{L})$ is non-trivial. Meanwhile, by the previous lemma, we know that \mathscr{L} with sufficiently large degree has trivial cohomology.
Let \mathscr{M} be an invertible sheaf of maximal possible degree with $H^{1}(C, \mathscr{M}) \neq 0$. Then for any point $D, \Gamma(C, M(D))=0$, that is for $\mathscr{L}=\mathscr{M}, \delta_{D}$ is surjective for all points D. This means that $0<\operatorname{dim}_{k} H^{1}(C, \mathscr{M}) \leq \operatorname{dim}_{k} \Gamma\left(C,\left.\mathscr{M}(D)\right|_{D}\right)=1$, i.e. $\operatorname{dim}_{k} H^{1}(C, \mathscr{M})=1$. Since δ_{D} is surjective for all D, δ is surjective on the stalks at all points D, which means δ is an isomorphism, because the stalks at any point D of $\mathscr{M} \otimes \Omega_{C}^{\otimes-1}$ and $H^{1}(C, \mathscr{M}) \otimes_{k} \mathscr{O}_{C} \simeq \mathscr{O}_{C}$ are both free modules of rank 1 over the local ring at D, and any surjective map between such modules is an isomorphism. Thus, we get $\mathscr{M} \otimes \Omega_{C}^{\otimes-1} \simeq \mathscr{O}_{C}$, or equivalently, $\mathscr{M} \simeq \Omega_{C}$

To get the canonical map, observe that Ω_{C} itself satisfies the properties required of \mathscr{M}, in particular for $\mathscr{L}=\Omega_{C}$ as well, the map δ will be an isomorphism. But

$$
\delta: \mathscr{O}_{C} \cong \Omega_{C} \otimes \Omega_{C}^{-1} \rightarrow H^{1}\left(C, \Omega_{C}\right)
$$

Taking global sections, we get the canonical isomorphism.

5 Serre duality and the Riemann-Roch theorem

Given a section $s \in \Gamma\left(C, \Omega_{C} \otimes \mathscr{L}^{\otimes-1}\right)$, we get a map $s \otimes 1: \mathscr{L} \rightarrow \Omega_{C} \otimes \mathscr{L}^{\otimes-1} \otimes \mathscr{L} \cong \Omega_{C}$, which induces a map from $H^{1}(C, \mathscr{L}) \rightarrow H^{1}\left(C, \Omega_{C}\right)$. In particular we get a pairing

$$
\Gamma\left(C, \Omega_{C} \otimes \mathscr{L}^{\otimes-1}\right) \times H^{1}(C, \mathscr{L}) \rightarrow H^{1}\left(C, \Omega_{C}\right) \cong k
$$

which we denote as the cup product \cup.

Theorem 5.1. Serre duality

$$
\cup: \Gamma\left(C, \Omega_{C} \otimes \mathscr{L}^{\otimes-1}\right) \times H^{1}(C, \mathscr{L}) \rightarrow H^{1}\left(C, \Omega_{C}\right) \cong k
$$

is a perfect pairing.
Proof. We are done if we show that the map $f: \Gamma\left(C, \Omega_{C} \otimes \mathscr{L}^{\otimes-1}\right) \rightarrow H^{1}(C, \mathscr{L})^{\vee}$, given by $s \mapsto c \circ(\cup s)$, is an isomorphism, where $c: H^{1}\left(C, \Omega_{C}\right) \rightarrow k$ is the canonical isomorphism.
Observe that the process of constructing the sequence ϕ and in particular the map δ is functorial in \mathscr{L}. Pick $s \in \Gamma\left(C, \Omega_{C} \otimes \mathscr{L}^{\otimes-1}\right)$. We have the commutative diagram:

Define a map $\eta: H^{1}(C, \mathscr{L})^{\vee} \rightarrow \Gamma\left(C, \Omega_{C} \otimes \mathscr{L}^{\otimes-1}\right)$, given by $t \mapsto(t \otimes 1) \circ \delta(\mathscr{L})$. Then from the diagram above, it can be seen that, $s=\delta\left(\Omega_{C}\right)^{-1} \circ(\cup s \otimes 1) \circ \delta(\mathscr{L})=$ $(c \otimes 1) \circ((\cup s) \otimes 1) \circ \delta(\mathscr{L})=((c \circ(\cup s)) \otimes 1) \circ \delta(\mathscr{L})=\eta \circ f(s)$. In particular, f is injective, η is surjective, and $\eta \circ f=\mathrm{id}$. If we show η is also injective, then $\eta=f^{-1}$ and we will be done.

Let $t \in \operatorname{ker}(\eta)$. Then $(t \otimes 1) \circ \delta(\mathscr{L})=0$. For each point D in C, pulling back via $i_{D}: \operatorname{Spec}(k(D)) \rightarrow C$ gives us $t \circ \delta_{D}=0$. Pick a large n, specifically satisfying $n+\operatorname{deg}(\mathscr{L})>\operatorname{deg}\left(\Omega_{C}\right)$. Pick n distinct points $D_{1}, D_{2}, \ldots, D_{n}$ on C. For each $1 \leq r \leq n, t \circ \delta_{D_{r}}=0$, which means that $t \circ \delta_{D}=0$ for $D=\sum_{r=1}^{n} D_{r}$. Since $\operatorname{deg}(\mathscr{L}(D))=\operatorname{deg}(\mathscr{L})+\operatorname{deg}(D)>\operatorname{deg}\left(\Omega_{C}\right)$, by lemma 4.1, $H^{1}(C, \mathscr{L}(D))=0$. Looking at sequence ϕ_{D}, this means that δ_{D} is surjective, and hence $t=0$. This shows that η is injective and completes the proof.

Theorem 5.2. Riemann-Roch theorem

For any invertible sheaf \mathscr{L} on C,

$$
\operatorname{dim}_{k} \Gamma(C, \mathscr{L})-\operatorname{dim}_{k} \Gamma\left(C, \Omega_{C} \otimes \mathscr{L}^{\otimes-1}\right)=1-g+\operatorname{deg}(\mathscr{L})
$$

Proof. By Serre duality, $\operatorname{dim}_{k} \Gamma\left(C, \Omega_{C} \otimes \mathscr{L}^{\otimes-1}\right)=\operatorname{dim}_{k} H^{1}(C, \mathscr{L})$. Therefore we have,

$$
\begin{aligned}
\operatorname{dim}_{k} \Gamma(C, \mathscr{L})-\operatorname{dim}_{k} \Gamma\left(C, \Omega_{C} \otimes \mathscr{L}^{\otimes-1}\right) & =\operatorname{dim}_{k} \Gamma(C, \mathscr{L})-\operatorname{dim}_{k} H^{1}(C, \mathscr{L}) \\
& =\chi(\mathscr{L}) \\
& =1-g+\operatorname{deg}(\mathscr{L}) \text { by theorem } 3.2
\end{aligned}
$$

Corollary 5.2.1.

1. $\operatorname{dim}_{k} \Gamma\left(C, \Omega_{C}\right)=g$
2. $\operatorname{deg}(\Omega(C)=2 g-2$

Proof.

1. Apply Riemann-Roch theorem for $\mathscr{L}=\mathscr{O}_{C}$. Since we know $\operatorname{dim}_{k} \Gamma\left(C, \mathscr{O}_{C}\right)=1$, $\operatorname{deg}\left(\mathscr{O}_{C}\right)=0$ and $\Omega_{C} \otimes \mathscr{O}_{C}^{\otimes-1}=\Omega_{C}$, we immediately get $\operatorname{dim}_{k} \Gamma\left(C, \Omega_{C}\right)=g$.
2. Apply Riemann-Roch theorem for $\mathscr{L}=\Omega_{C}$. Since we know $\operatorname{dim}_{k} \Gamma\left(C, \Omega_{C}\right)=g$, $\Omega_{C} \otimes \Omega_{C}^{\otimes-1}=\mathscr{O}_{C}$ and $\operatorname{dim}_{k} \Gamma\left(C, \mathscr{O}_{C}\right)=1$, we immediately get $\operatorname{deg}\left(\Omega_{C}\right)=2 g-2$.

References

[Har77] Robin Hartshorne. Algebraic Geometry. Springer New York, 1977.
[Kem77] George R. Kempf. On algebraic curves. Journal für die reine und angewandte Mathematik, 295:40-48, 1977.

