
The Riemann-Roch Theorem

Devang Agarwal

Abstract: In this article, we present a proof of the Riemann-Roch theorem on smooth
irreducible algebraic curves given in the article [Kem77].

1 Introduction

Fix a smooth irreducible algebraic curve C over an algebraically closed field k. For
an invertible sheaf L on C, let K (L ) denote the constant sheaf of rational sections
of L , and P(L ) denote the quotient sheaf K (L )/L . We’d like to show that the
sheaf P(L ) is isomorphic to the direct sum of its stalks. Since the question is local,
by restricting ourselves to an affine open set U ⊆ C where L is trivial, we can see this
by the lemma:

Lemma 1.1. Let A be a Dedekind domain and K be its field of fractions. Then the
natural map,

K�A→
⊕
m

K�Am

is an isomorphism.

Proof. Note that the injectivity of the map is clear from the fact that ∩mAm = A for
a domain A. To show surjectivity, fix a maximal ideal m0 of A. Pick t1 ∈ A such
that vm0(t1) = 1, where vm denotes the valuation associated to the maximal ideal m.
Consider the finite set P = {m | vm(t−1

1 ) < 0}−{m0}. Let I =
∏
m∈P m

vm(t1) and pick
a ∈ I −m0I. Now note that for t = a−1t1, vm(t) ≤ 0 for all m 6= m0, and vm0 = 1.
Take a set of representatives S of A/m0 in A. Then any c ∈ K has a power series
expansion of the form c =

∑
n<0 ant

−n + d, where the sum is finite, an ∈ S and
d ∈ Am0 . Set c0 =

∑
n<0 ant

−n. Then c0 has image c in K/Am0 and 0 in other
components, since for m 6= m0, vm(c0) ≥ 0. Hence, the map is surjective. �

From this we see that P(L ) is a flasque sheaf, and hence has trivial cohomology.
Now pick an effective divisor D on C. We have inclusions L ↪−→ L (D) ↪−→ K (L ).
Taking quotients by L , we get the following diagram with exact rows:

0 L K (L ) P(L ) 0

0 L L (D) L (D)|D 0 (ΦD)
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Note that the sheaf L (D)|D is supported at the support of D, and hence also has
trivial cohomology. Taking global sections, we get:

0 Γ(C,L ) Γ(C,K (L )) Γ(C,P(L )) H1(C,L ) 0

(φD) 0 Γ(C,L ) Γ(C,L (D)) Γ(C, L (D)|D) H1(C,L ) H1(C,L (D)) 0
δD

where the vertical maps are all induced by the above inclusions. Some key observations:

1. For increasing divisors D, the sequence below limits to the sequence above.

2. In particular, every class in H1(C,L ) is in the image of δD for some D.

3. If D = D1 + D2, where D1 and D2 are effective divisors with disjoint supports,
Γ(C, L (D)|D) ∼= Γ(C, L (D1)|D1

)⊕Γ(C, L (D2)|D2
), and hence δD can be iden-

tified with δD1 ⊕ δD2 .

Theorem 1.2. H1(C,L ) = 0 iff for any effective divisor E and a point D of C,
dimk(Γ(C,L (E +D))/Γ(C,L (E)) = 1.

Proof. By observation 1, we see that H1(C,L ) vanishes iff δD is zero for all D. Mean-
while, for a given D, δD = 0 iff dimk(Γ(C,L (D))/Γ(C,L )) = dimk Γ(C, L (D)|D) =
deg(D). Therefore, we get H1(C,L ) = 0 iff for all effective divisors D,
dimk(Γ(C,L (D))/Γ(C,L )) = deg(D). This is equivalent to the condition in the state-
ment of the theorem by simple induction. �

Using theorem 1.2, we can reduce the study of the sequence φD to the case where D is
just a point, by replacing L by L (E).

2 Globalizing the sequence φD

We begin with the following sequence on C × C:

0 OC×C OC×C(∆) OC×C(∆)|∆ 0 (1)

We claim that this is the globalization of the sequence,

0 OC OC(D) OC(D)|D 0 (2)

where D is a point of C. By that we mean that:

Theorem 2.1. If fD : C → C × C is the map given by π1 ◦ fD = idC and π2 ◦ fD
is the constant map to the point D, the pullback of the sequence 1 by fD gives us the
sequence 2.
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Proof. On the open set U = ∆c, the sequence 1 is just,

0 OU OU 0 0

And thus the pullback by fD does in fact give the sequence (2) restricted to f−1
D (U) =

C −D. Thus we only need to check the pullback sequence on a neighbourhood of D.

Take an affine neighbourhood W = Spec(A) of D in C. Then, V = W ×W = Spec(B)
is an affine neighbourhood of fD(D) = (D,D), where B = A ⊗k A. Let p∆ and pD
be the prime ideals of B associated to the irreducible subsets V ∩∆ and V ∩ C ×D,
respectively. Then, p∆ is the kernel of the diagonal map B = A⊗A→ A, and pD is the
kernel of the map given by B = A⊗ A → A⊗ A/mD

∼= A, where mD is the maximal
ideal of A associated with the point D. Meanwhile, let m(D,D) be the maximal ideal of
B associated to the point (D,D). We know that p∆ + pD ⊆ m(D,D) Then we have the
diagram,

B/p∆

B B/p∆ ⊗B B/pD B/(p∆ + pD)

B/pD

h

where the map h is the map induced by the universal property of the tensor product.
Clearly, h is surjective. But B/p∆ ⊗B B/pD ∼= k, therefore B/(p∆ + pD) ∼= k, and
hence p∆ + pD = m(D,D). This continues to hold after localizing at the m(D,D), and
hence we get, p(D,D),∆ + p(D,D),C×D = mC×C,(D,D), where p(D,D),∆ = p∆OC×C,(D,D)

and p(D,D),C×D = pDOC×C,(D,D), are the prime ideals of the local ring OC×C,(D,D) of
C × C at (D,D) corresponding to ∆ and C ×D, respectively.
C × C is smooth, and hence OC×C,(D,D) is a UFD. In particular p(D,D),∆ = (t∆).
Now, the map induced by fD on the local rings, f∗D : OC×C,(D,D) → OC,D, is just
the quotient by p(D,D),C×D map. Therefore, image of p(D,D),∆ and in particular tD =
f∗D(t∆) generate the maximal ideal mC,D of OC,D.
The rational function t∆ is such that at all the divisors through (D,D), it has precisely
just a simple zero across ∆. Removing the divisors other than ∆ from the support of
div(t∆), we get an open set V1 containing (D,D), such that div(f)|V1 = ∆. Considering

tD = f∗D(t∆) to be a regular function on U1 = f−1
D (V1), we find that tD has a simple

zero at D (since it generates mC,D). Removing the points of the support of div(tD)
other than D from U1, and their images from V1, we get open neighbourhood V2 of
(D,D), such that div(t∆)|V2 = ∆, and div(tD)|U2

= D, where U2 = f−1
D (V2), i.e. ∆

and D are principal divisors on V2 and U2 respectively.
Coming back to our sequences, we see that when restricted to V2, the sequence 1
becomes:

0 OV2 t−1
∆ OV2 t−1

∆ OV2/OV2 0
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which when pulled back via fD, becomes:

0 OU2 t−1
D OU2 t−1

D OU2/OU2 0

which is the same as the sequence 2 restricted to U2. Since U and U2 cover C, we are
done. �

Tensoring the sequence 1 by π∗1L , we get:

0 π∗1L π∗1L (∆) π∗1L ⊗ OC×C(∆)|∆ 0

whose pullback via fD is the sequence ΦD of section 1. Using the adjunction of pullback
and pushforward, we get the vertical maps of the diagram:

0 π∗1L π∗1L (∆) π∗1L ⊗ OC×C(∆)|∆ 0

0 (fD)∗L (fD)∗L (D) (fD)∗ L (D)|D 0

(3)

where the bottom row is exact since fD is affine (it is a closed immersion), which
makes (fD)∗ exact. We now want to take the direct image of this diagram via π2, but
before that, a lemma for computation of higher direct images.

Lemma 2.2. Let f : X → Y be a separated morphism of finite type of noetherian
schemes, u : Y ′ → Y be a flat morphism of noetherian schemes and g : X ′ = X×Y Y ′ →
Y ′ be the base extension of f via u. Let F be a quasi-coherent sheaf on X.

X ′ X

Y ′ Y

v

g f

u

Then for i ≥ 0 there are natural isomorphisms

u∗Rif∗(F ) ∼= Rig∗(v
∗F )

Proof. [Har77, Theorem III.9.3] �

Using the lemma for f = u = the structure morphism C → Spec k, we get,

Riπ2∗(π1F ) ∼= H i(C,F )⊗k OC

Also note that π2 ◦ fD is the constant map to the point D. Hence, Ri(π2 ◦ fD)∗(F )
is the skyscraper sheaf associated to the module H i(C,F ) supported at D. Also, we
have natural isomorphisms:

π2∗(π
∗
1L ⊗ OC×C(∆)|∆) = π2∗(π

∗
1L ⊗∆∗∆

∗(OC×C(∆)|∆))

= π2∗∆∗(∆
∗(π∗1L )⊗∆∗(OC×C(∆)|∆)))

= L ⊗∆∗(OC×C(∆)|∆)

= L ⊗ Ω⊗−1
C
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Finally we can take the pushforward of diagram 3 via π2:

(φ) 0 Γ(C,L )⊗k OC π2∗(π
∗
1L ) L ⊗ Ω⊗−1

C H1(C,L )⊗k OC

0 iD∗Γ(C,L ) iD∗Γ(C,L (D)) iD∗Γ(C, L (D)|D) iD∗H
1(C,L )

p δ

pD δD

Here, iD is the inclusion of the point D into C. The sequence φ is the globalization of
the sequence φD; Pulling back the diagram via iD gives us the sequence φD in bottom
rows, but all the vertical maps after pulling back are isomorphisms, so we get that
φD = i∗D(φ). In particular, δD = 0 iff pD is surjective, which is true iff p is surjective
on the stalk at D (by Nakayama’s lemma) which is true iff δ is zero on the stalk at D.
Therefore we have:

Theorem 2.3. δ vanishes at D iff δD is 0.

3 Finite dimensionality of the cohomology groups

Lemma 3.1. For any non-zero effective divisor E on C, H1(C,ΩC(E)) = 0.

Proof. Set L = ΩC(E) for some non-zero effective divisor E in the sequences above.
L ⊗Ω⊗−1

C = OC(E). H1(C,ΩC(E))⊗OC
∼= O⊕rC , where r = dimkH

1(C,ΩC(E)). If δ
is nonzero, r > 0, and hence by composing δ with one of the projections, we will get a
nonzero map OC(E)→ OC , which corresponds to a nonzero global section of OC(−E),
which do not exist (There is no non-zero regular function which vanishes only along
E). Therefore δ must be zero, which means δD is zero for all D. But that gives us
dimk Γ(C,ΩC(E +D))/Γ(C,ΩC(E)) = 1, for all non-zero effective divisors E, and all
points D of C. Thus by theorem 1.2, we are done. �

Theorem 3.2. Let L be an invertible sheaf on C. Then Γ(C,L ) and H1(C,L ) are
finite dimensional. Moreover, if we set the Euler characteristic of L to be χ(L ) =
dimk Γ(C,L )− dimkH

1(C,L ), then

χ(L ) = 1− g + deg(L )

where g = dimkH
1(C,OC) is the genus of C, and deg(L ) = deg(div(s)) for any

rational section s of L .

Proof. We know that for any rational section s of L , the map OC(D)→ L , given by
f 7→ f ∗ s is an isomorphism.
First we show the finite dimensionality of Γ(C,L ). If Γ(C,L ) 6= 0, L has a global
section s. D = div(s) will be an effective divisor, since s is globally defined, and
hence L ∼= OC(D) for an effective divisor D. But by the sequence φD, we know that
dimk Γ(C,OC(D))/Γ(C,OC) ≤ deg(D). But dimk Γ(C,OC) = 1, which gives us the
finite dimensionality of Γ(C,OC(D)) = Γ(C,L ). To see the finite dimensionality of

5



H1(C,L ), observe that for any effective divisor E and invertible sheaf L , the sequence
φD tells us that L has finite dimensional cohomology iff L (E) does. Furthermore, if
the cohomologies are finite dimensional, we have,

dimk Γ(C,L (E))− dimk Γ(C,L ) + dimkH
1(C,L )− dimkH

1(C,L (E))

= dimk Γ(C, L (E)|E) = deg(E)

that is, χ(L (E)) = χ(L ) + deg(E). Writing any divisor D as D1 − D2, where D1

and D2 are effective, and using the result for effective divisors twice, we get the same
result for all divisors.// By the above discussion and the previous lemma, we know
that there exists an invertible sheaf M with finite dimensional cohomology groups.
Now, M ∼= O(D1) for a divisor D1 of some rational section of M . Thus OC has finite
dimensional cohomology groups. But as mentioned in the beginning of the proof, any
invertible sheaf L ∼= OC(D), which gives us that L has finite dimensional cohomologies
and that χ(L ) = χ(OC(D)) = χ(OC) + deg(D) = 1− g + deg(L ). �

4 The canonical class

First, a result on vanishing of cohomologies for sheafs with high degree.

Lemma 4.1. Let L be an invertible sheaf on C with degree strictly larger than deg(ΩC).
Then, H1(C,L ) = 0.

Proof. This is essentially a strengthening of lemma 3.1. The same proof goes through,
except in this case there is no morphism from N (E) = L (E) ⊗ Ω⊗−1

C → OC for an
effective divisor E, because N (E) has positive degree, hence a morphism N → OC

represents a regular section of N ⊗−1, which has negative degree. But an invertible
sheaf of negative degree is isomorphic to OC(D) for a divisor D of negative degree,
which doesn’t have any regular sections. �

Theorem 4.2. H1(C,ΩC) is one dimensional. In fact there exists a canonical isomor-
phism from k ∼= H1(C,ΩC).

Proof. By theorem 3.2, we know that for invertible sheaves L of low enough degree,
H1(C,L ) is non-trivial. Meanwhile, by the previous lemma, we know that L with
sufficiently large degree has trivial cohomology.
Let M be an invertible sheaf of maximal possible degree with H1(C,M ) 6= 0. Then for
any pointD, Γ(C,M(D)) = 0, that is for L = M , δD is surjective for all pointsD. This
means that 0 < dimkH

1(C,M ) ≤ dimk Γ(C, M (D)|D) = 1, i.e. dimkH
1(C,M ) = 1.

Since δD is surjective for all D, δ is surjective on the stalks at all points D, which
means δ is an isomorphism, because the stalks at any point D of M ⊗ Ω⊗−1

C and
H1(C,M )⊗kOC ' OC are both free modules of rank 1 over the local ring at D, and any
surjective map between such modules is an isomorphism. Thus, we get M⊗Ω⊗−1

C ' OC ,
or equivalently, M ' ΩC
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To get the canonical map, observe that ΩC itself satisfies the properties required of M ,
in particular for L = ΩC as well, the map δ will be an isomorphism. But

δ : OC
∼= ΩC ⊗ Ω−1

C → H1(C,ΩC)

Taking global sections, we get the canonical isomorphism. �

5 Serre duality and the Riemann-Roch theorem

Given a section s ∈ Γ(C,ΩC ⊗L ⊗−1), we get a map s⊗1 : L → ΩC⊗L ⊗−1⊗L ∼= ΩC ,
which induces a map from H1(C,L )→ H1(C,ΩC). In particular we get a pairing

Γ(C,ΩC ⊗L ⊗−1)×H1(C,L )→ H1(C,ΩC) ∼= k

which we denote as the cup product ∪.

Theorem 5.1. Serre duality

∪ : Γ(C,ΩC ⊗L ⊗−1)×H1(C,L )→ H1(C,ΩC) ∼= k

is a perfect pairing.

Proof. We are done if we show that the map f : Γ(C,ΩC ⊗L ⊗−1) → H1(C,L )∨,
given by s 7→ c ◦ (∪s), is an isomorphism, where c : H1(C,ΩC) → k is the canonical
isomorphism.
Observe that the process of constructing the sequence φ and in particular the map δ is
functorial in L . Pick s ∈ Γ(C,ΩC ⊗L ⊗−1). We have the commutative diagram:

δ(L ) : L ⊗ Ω⊗−1
C H1(C,L )⊗k OC

δ(ΩC) : OC H1(C,ΩC)⊗k OC

×s ∪s⊗1

Define a map η : H1(C,L )∨ → Γ(C,ΩC ⊗L ⊗−1), given by t 7→ (t ⊗ 1) ◦ δ(L ).
Then from the diagram above, it can be seen that, s = δ(ΩC)−1 ◦ (∪s ⊗ 1) ◦ δ(L ) =
(c ⊗ 1) ◦ ((∪s) ⊗ 1) ◦ δ(L ) = ((c ◦ (∪s)) ⊗ 1) ◦ δ(L ) = η ◦ f(s). In particular, f is
injective, η is surjective, and η ◦ f = id. If we show η is also injective, then η = f−1

and we will be done.

Let t ∈ ker(η). Then (t ⊗ 1) ◦ δ(L ) = 0. For each point D in C, pulling back
via iD : Spec(k(D)) → C gives us t ◦ δD = 0. Pick a large n, specifically satisfy-
ing n + deg(L ) > deg(ΩC). Pick n distinct points D1, D2, . . . , Dn on C. For each
1 ≤ r ≤ n, t ◦ δDr = 0, which means that t ◦ δD = 0 for D =

∑n
r=1Dr. Since

deg(L (D)) = deg(L ) + deg(D) > deg(ΩC), by lemma 4.1, H1(C,L (D)) = 0. Look-
ing at sequence φD, this means that δD is surjective, and hence t = 0. This shows that
η is injective and completes the proof. �
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Theorem 5.2. Riemann-Roch theorem
For any invertible sheaf L on C,

dimk Γ(C,L )− dimk Γ(C,ΩC ⊗L ⊗−1) = 1− g + deg(L )

Proof. By Serre duality, dimk Γ(C,ΩC ⊗L ⊗−1) = dimkH
1(C,L ). Therefore we have,

dimk Γ(C,L )− dimk Γ(C,ΩC ⊗L ⊗−1) = dimk Γ(C,L )− dimkH
1(C,L )

= χ(L )

= 1− g + deg(L ) by theorem 3.2

�

Corollary 5.2.1.

1. dimk Γ(C,ΩC) = g

2. deg(Ω(C) = 2g − 2

Proof.

1. Apply Riemann-Roch theorem for L = OC . Since we know dimk Γ(C,OC) = 1,
deg(OC) = 0 and ΩC ⊗ O⊗−1

C = ΩC , we immediately get dimk Γ(C,ΩC) = g.

2. Apply Riemann-Roch theorem for L = ΩC . Since we know dimk Γ(C,ΩC) = g,
ΩC ⊗Ω⊗−1

C = OC and dimk Γ(C,OC) = 1, we immediately get deg(ΩC) = 2g− 2.

�
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