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Abstract

In this essay, we establish the fundamental exact sequence of class field theory and a fundamen-

tal class for number fields, assuming local class field theory and the first and second inequalities.

This essay had been made as an end of term project for the course MATH 613D in the 2021

Winter term 1 at UBC.

1 Notation & Preliminaries

MK set of places of a number field K

Kv completion of a number field K at a place v ∈ MK

Lv completion of L at a place above a place v of K, where L is finite, Galois over

K̄ a fixed separable closure of a field K

GK = Gal(K̄/K), the absolute Galois group of a field K

GL/K = Gal(L/K), the Galois group of a Galois extension L/K

Br(K) = H2(GK , K̄∗), the Brauer group of a field K

Br(L/K) = H2(GL/K , L∗), where L/K is a Galois extension of fields

IK the group of idèles of a number field K

CK = IK/K∗, the idèle class group of a number field K

H2(L/K) = H2(GL/K ,CL) for a Galois extension L of a number field K

H2(K) = lim−→L/K
H2(L/K), where the limit is over Galois extensions L of K

The goal of this essay is to compute Br(K) for a number field K, in the form of the fundamental

exact sequence, and to show that H2(L/K) is cyclic of order [L : K] with a canonical generator (the

fundamental class) for every Galois extension L/K. First we state some results that we will need.

Theorem 1.1. For every abelian extension L/K of number fields, and a finite set S of primes of K

containing all infinite primes and those that ramify in L, the map,

p 7→ (p, L/K) : IS → Gal(L/K)

is surjective, where IS is the group of fractional ideals coprime to the primes in S, and (p, L/K) is

the Frobenius element for p.

Proof. Follows immediately from the first inequality, see Consequence 8.7, Chapter VII in [CFSU67] or

Corollary 4.8, Chapter VII in [Mil20]. Alternatively for an analytic proof, see Corollary 3.8, Chapter

VI, also in [Mil20].
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Theorem 1.2. Let L/K be a cyclic extension of number fields. Then,

1. (IK : K∗ Nm(CL)) is finite and divides [L : K]

2. H1(GL/K ,CL) = 0

3. H2(GL/K ,CL) is finite and divides [L : K]

Proof. This is the second inequality. For a proof, see Theorem 9.1, Chapter VII in [CFSU67] or

Theorem 5.1, Chapter VII in [Mil20].

Given a Galois extension L/K of number fields, we have the reciprocity map given by

ϕL/K : IK → Gab
L/K

(av) 7→
∏
v

ϕv(av)

where ϕv : K∗
v → (Gv

L/K)ab is the local reciprocity map and Gv
L/K is the decomposition group of any

place w of L above v. We will need the following computation of the reciprocity map for the extension

Q(ζn)/Q.

Lemma 1.3. For a cyclotomic extension L of a number field K (i.e. L ⊂ K(ζn) for some n), the

reciprocity map sends principal idèles to 1, i.e. ∀a ∈ K∗, ϕL/K(a) = 1

Proof. Follows from an explicit computation of the local reciprocity maps for extensions Q(ζn)/Q, and

compatibility of local reciprocity maps with change of base fields and field norms, see section 10.4,

Chapter VII in [CFSU67] or Example 8.2 and Lemma 8.4, Chapter VII in [Mil20] for details.

Lastly, we require the following results from local class field theory. For proofs, see Chapter VI of

[CFSU67].

Theorem 1.4. For every non archimedean local field K there exist an isomorphism, invK : Br(K)
∼−→

Q/Z such that we have the following commutative diagram for every finite extension L/K of local fields

with degree n,

0 Br(L/K) Br(K) Br(L)

0 1
nZ/Z Q/Z Q/Z

Inf

invL/K

Res

invK invL

×n

This diagram has exact rows and all vertical maps are isomorphisms.

For archimedean local fields we have invR : Br(R) ∼−→ 1
2Z/Z, and invC : Br(C) ∼−→ (0) and the following

diagram,

0 Br(C/R) Br(R) Br(C)

0 1
2Z/Z

1
2Z/Z 0

Inf

invC/R

Res

invR invC

×2
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Theorem 1.5. For a Galois extension L/K of local fields, let χ ∈ Hom(GL/K ,Q/Z) ∼= H1(GL/K ,Q/Z)
be a character of its Galois group. If δ : H1(GL/K ,Q/Z) ∼−→ H2(GL/K ,Z) denotes the isomorphism

obtained from the connecting map of the long exact sequence for 0 → Z → Q → Q/Z → 0, and ᾱ

denotes the class of α ∈ K∗ in H0
T (GL/K , L∗), then we have,

χ(ϕL/K(a)) = invL/K(ā ∪ δχ)

2 Splitting of Brauer Classes

Let L/K be an algebraic field extension. We say an element α ∈ Br(K) is split by L if it is mapped

to zero under Res : Br(K) → Br(L). Now assume L/K to be Galois. By Hilbert’s theorem 90,

H1(GK ,K∗) = 0 for all fields K, so by the restriction-inflation sequence of group cohomology, we

have an exact sequence,

0 → Br(L/K)
inf−−→ Br(K)

Res−−→ Br(L)

So we may identify Br(L/K) with the subgroup of Brauer classes of Br(K) split by the extension

L/K. Theorem 1.4 tells us that for local fields, this depends just on the degree of the extension.

Now let L/K be a finite Galois extension of number fields. Then we have the exact sequence,

0 → L∗ → IL → CL → 0

of GL/K-modules. From theorem 1.2, we know that H1(GL/K ,CL) = 0, so taking the long exact

sequence gives us,

0 → Br(L/K) → H2(GL/K , IL) → H2(L/K) → H3(GL/K , L∗) (1)

We also have an isomorphism H2(GL/K , IL) ∼=
⊕

v∈Mk
Br(Lv/Kv), where the map is given by a sum

of restrictions to decomposition groups followed by maps induced by L∗ ↪→ (Lv)∗ for an arbitrary

choice of a place of L above each place of K. Replacing H2(GL/K , IL) by
⊕

v∈Mk
Br(Lv/Kv) and

taking direct limits over all Galois extensions L over K, we obtain,

0 → Br(K) → ⊕v Br(Kv) → lim−→
L/K

H2(L/K) (2)
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Combining this with a similar sequence for L and the previous sequence, we get the diagram,

0 0 0

0 Br(L/K)
⊕

v Br(L
v/Kv) H2(L/K)

0 Br(K)
⊕

v Br(Kv) H2(K)

0 Br(L)
⊕

v

(⊕
w|v Br(Lw)

)
H2(L/K)

(3)

with exact rows and columns (columns are exact due to restriction-inflation). Now let α ∈ Br(K),

with image (αv) ∈
⊕

v Br(Kv). Then α ∈ Br(L/K) iff α maps to zero in Br(L) or equivalently (αv)

maps to zero in
⊕

v

(⊕
w|v Br(Lw)

)
. Interpreting this via invariant maps of theorem 1.4, we obtain,

Lemma 2.1. With notation as above, α ∈ Br(K) is split by L iff for all places v of K,

[Lv : Kv] invKv
(αv) = 0 in Q/Z, if v is finite, and in 1

2Z/Z is v is real. (There is nothing to check

for complex places).

3 Cyclic cyclotomic extensions

In local class field theory, we see that unramified extensions of local fields play an important role

due to them not only being well-behaved due to their similarities with finite field extensions, but at

the same being being a large enough class of extensions to be able to split the entire Brauer group

of a local field. In the global setting, cyclotomic extensions form a large class of better understood

extensions, meanwhile being cyclic makes computation of cohomology easier due to periodicity of the

cohomology groups, so we try to find useful families of cyclic, cyclotomic extensions and show that

these extensions can split all Brauer classes of a number field.

Consider the cyclotomic extension Q(ζpr )/Q. For now we assume p ̸= 2. We have the following

isomorphisms,

Gal(Q(ζpr )/Q) ∼= (Z/prZ)∗ ∼= ∆p × Z/pr−1Z

where ∆p
∼= Z/(p − 1)Z. Here the first isomorphism is natural and second depends only on a choice

of a primitive root modulo pr. Let Lpr be the fixed field of ∆p, then Gal(Lpr/Q) ∼= Z/pr−1Z and

[Q(ζpr ) : Lpr ] = (p−1). Furthermore, under the above sequence of isomorphisms, complex conjugation

corresponds to the residue class of [−1] in (Z/prZ)∗ which in turn gets mapped to the element (p−1
2 , 0)

of ∆p × Z/pr−1Z, and hence fixes Lpr . Therefore the extension Lpr is totally real.

Now consider Q(ζ2r )/Q for r ≥ 3. Here we have isomorphisms,

Gal(Q(ζ2r )/Q) ∼= (Z/2rZ)∗ ∼= ⟨[−1]⟩ × ⟨[5]⟩ ∼= ⟨[−52
r−3

]⟩ × ⟨[5]⟩
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where [ ] denotes residue classes in (Z/2rZ)∗. Let L2r be the fixed field of ∆2 := ⟨[−52
r−3

]⟩. Then

it has Galois group Gal(L2r/Q) ∼= ⟨[5]⟩ ∼= Z/2r−2Z and [Q(ζ2r ) : L2r ] = 2. Moreover, since complex

conjugation, [−1] does not fix L2r , this extensions is totally complex.

Therefore we have a family of extensions Lpr of Q for every prime p and r ≥ 3 satisfying:

� The extensions Lpr/Q are cyclic with degree, a power of p. Moreover, [Lpr : Q] → ∞ as r → ∞.

(the degree is pr−1 if p ̸= 2 and is 2r−2 if p = 2)

� Lpr ⊂ Q(ζpr ), with [Q(ζpr ) : Lpr ] ≤ p (we know this degree is p− 1 for p ̸= 2 and is 2 if p = 2)

We now look at local degrees [(Lpr )l : Ql].

If l = p, we know that p is totally ramified in Q(ζpr )/Q and hence in Lpr/Q, so the local degree

[(Lpr )p : Qp] = [Lpr : Q] → ∞ as r → ∞.

Meanwhile if l ̸= p, then l does not ramify in Q(ζpr ), and hence in Lpr , so the local degrees of both

the extensions at l is going to be equal to the residue degree at l. The residue field extension of

Q(ζpr )/Q at l is generated by the pr-th roots of unity over Fl and hence has degree, the smallest

integer d for which Fld contains roots of xpr − 1, i.e. the smallest integer satisfying pr | ld − 1, i.e.

d is the order of l modulo pr. Therefore, [(Lpr )l : Ql] = [Q(ζpr )l : Ql]/[Q(ζpr )l : (Lpr )l] ≥ d/p since

[Q(ζpr )l : (Lpr )l] | [Q(ζpr ) : Lpr
] ≤ p. Clearly, d → ∞ as r → ∞, and hence even in this case

[(Lpr )l : Ql] → ∞ as r → ∞. So we have all the ingredients needed to prove the following,

Lemma 3.1. For any finite set S of finite places of a number field K, and a positive integer m, there

exists a totally complex, cyclic, cyclotomic extension L/K such that for all v ∈ S, m | [Lv : Kv].

Proof. We first reduce to K = Q. Let L be a totally complex, cyclic, cyclotomic extension of Q such

that for all p ∈ {p ∈ MQ|∃v ∈ S, p | v}, m[K : Q] | [Lp : Kp]. K.L is clearly totally complex. Since

L ⊂ Q(ζn) for some n, K.L ⊂ K(ζn) and is hence cyclotomic over K. Moreover, Gal((K.L)/K) ∼=
Gal(L/K ∩ L) ⊂ Gal(L/Q) and is hence cyclic. Finally, for v ∈ S above a rational prime p, we have,

m[K : Q] | [(K.L)p : Qp] = [(K.L)v : Kv][K
p : Qp] | [(K.L)v : Kv][K : Q]

and therefore m | [(K.L)v : Kv]. So K.L has the required properties.

Now we assume K = Q. From our discussion before the lemma, for each prime p dividing m, the

extension Lprp/Q is cyclic, cyclotomic with p-power degree and for large enough rp, the local degrees

[(Lprp
)l : Ql] are going to be powers of p larger than pvp(m) for every l ∈ S. If 2 | m, let L be the

composite of such extensions for every prime p dividing m, else also include L8 in the composite.

Then L/Q is clearly cyclotomic, it is also cyclic since its a composite of prime-power cyclic extensions

for distinct primes, and its totally complex since it contains L2r for some r which is totally complex.

Lastly, m | lcmp|m([(Lprp )l : Ql]) | [Ll : Ql], so the extension L/Q has all the required properties.

Going back to the situation in lemma 2.1, since α ∈ Br(K) = (αv) ∈
⊕

v Br(Kv), almost all αv

are zero. Let S be the set of finite places where αv is non-zero and m be the lcm of the denominators

of all the nonzero αv. Then using the last lemma along with 2.1 we obtain,
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Corollary 3.1.1.

Br(K) =
⋃
L/K

cyclic, cyclotomic

Br(L/K)

By essentially the same argument, we also have,

Corollary 3.1.2. ⊕
v

Br(Kv) =
⋃
L/K

cyclic, cyclotomic

⊕
v

Br(Lv/Kv)

4 The Fundamental Exact Sequence

In section 2, we saw that Br(K) sits injectively inside
⊕

v Br(Kv). We understand Br(Kv) very well

(theorem 1.4), so to understand Br(K) it will suffice to compute the image of Br(K) in the direct

sum. In the last section, we saw that every class in Br(K) actually lives inside Br(L/K) for a cyclic

cyclotomic extension L/K, so it further suffices to find the image of Br(L/K) in
⊕

v Br(L
v/Kv).

Since GL/K is cyclic, we know that H3(GL/K ,CL) ∼= H1(GL/K ,CL) = 0 (theorem 1.2). So the exact

sequence 1 of section 2 becomes,

0 → Br(L/K) →
⊕
v

Br(Lv/Kv) → H2(L/K) → 0

To compute H2(L/K) we will use the following,

Lemma 4.1. For a cyclic cyclotomic extension L/K, if α ∈ Br(L/K), then
∑

v invLv/Kv
(α) = 0.

Proof. Note that by invLv/Kv
(α), we actually mean invLv/Kv

(jv ◦Res
Gv

L/K

GL/K
◦i(α)), where i and jv are

the maps induced by the inclusion L∗ ↪→ IL and the projection jv : IL → (Lv)∗ on the cohomologies

respectively, and jv ◦Res
Gv

L/K

GL/K
: H2(GL/K , IL) → Br(Lv/Kv) is the projection under the isomorphism

H2(GL/K , IL) ∼=
⊕

v Br(L
v/Kv).

For now let L/K be an arbitrary finite Galois extension. As in the hypothesis for theorem 1.5,

let χ ∈ H1(GL/K ,Q/Z) be a character and δχ ∈ H2(GL/K ,Z) be its image under the bound-

ary isomorphism δ : H1(GL/K ,Q/Z) ∼−→ H2(GL/K ,Z). Furthermore, for every place v of K, let

χv = Res
Gv

L/K

GL/K
χ ∈ H1(Gv

L/K ,Q/Z) and δv : H1(Gv
L/K ,Q/Z) ∼−→ H2(Gv

L/K ,Z) be the boundary

isomorphism. Then we have the following diagram,

H0
T (GL/K , L∗) H0

T (GL/K , IL) GL/K

Br(L/K)
⊕

v Br(L
v/Kv) Q/Z

∪δχ

ϕL/K

⊕vjv◦Res
Gv

L/K
GL/K

◦(∪δχ) χ

∑
v invLv/Kv

The left square commutes due to the functoriality of the cup-product, meanwhile if
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α = (αv) ∈ H0
T (GL/K , IL) =

⊕
v H

0
T (G

v
L/K , (Lv)∗) =

⊕
v K

∗
v/Nm(Lv)∗, then,

χ(ϕL/K(α)) =
∑
v

χ(ϕLv/Kv
(αv))

=
∑
v

χv(ϕLv/Kv
(αv))

=
∑
v

invLv/Kv
(αv ∪ δvχv) (by theorem 1.5)

=
∑
v

invLv/Kv
(jv(α) ∪ δvχv)

=
∑
v

invLv/Kv
(jv(α ∪ δvχv))

=
∑
v

invLv/Kv
(jv ◦ Res

Gv
L/K

GL/K
(α ∪ δχ)) (restriction commutes with cup products and boundary maps)

That is, the right square also commutes. Now let L/K be cyclic, cyclotomic and pick χ to be a

generating character. Then we know that both the ∪δχ in the diagram are isomorphisms (theorem

5, chapter IV in [CFSU67]) in particular the one on the left is surjective. But from theorem 1.3, we

know that the composition on the top row is zero, therefore the composition on the bottom row is

also zero, proving what we claimed.

Consider the following diagram,

0 Br(L/K)
⊕

v Br(L
v/Kv) H2(L/K) 0

1
nL/K

Z/Z 0

∑
v invLv/Kv

invL/K

where nL/K = lcmv[L
v : Kv] Here, the horizontal sequence is exact, the bent sequence is a complex

from the lemma above, and the angled map is surjective. This induces a surjective map invL/K from

H2(L/K) to 1
nL/K

Z/Z. But theorem 1.1 tells us that there exists a finite unramified place v such

that (pv, L/K) is the generator of the Galois group, and hence [Lv : Kv] = fv = [L : K], which gives

us [L : K] | nL/K | [L : K], i.e. nL/K = [L : K]. But then from theorem 1.2, we have that order

of H2(L/K) ≤ [L : K]. Therefore, invL/K is an isomorphism. Going back to Br(K), consider the
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commutative diagram,

0 0 0

0 Br(L/K)
⊕

v Br(L
v/Kv)

1
nL/K

Z/Z 0

0 Br(K)
⊕

v Br(Kv) Q/Z 0

inv1
L/K

inv1
K

where inv1L/K =
∑

v invLv/Kv
and inv1K =

∑
v invKv

. From the above discussion, the top row is

exact for cyclic, cyclotomic extensions L/K, while the columns are always exact. Let α ∈ Br(K).

Then α ∈ Br(L/K) for some cyclic, cyclotomic extension of K due to corollary 3.1.1, and thus∑
v invKv

(α) =
∑

v invLv/Kv
(α) = 0, so the bottom row is a complex. Moreover, if (αv) ∈

⊕
v Br(Kv)

such that
∑

v invKv
(αv) = 0, due to corollary 3.1.2, (αv) ∈

⊕
v Br(L

v/Kv) for some cyclic, cyclotomic

extension L/K, but then
∑

v invLv/Kv
(αv) =

∑
v invKv

(αv) = 0, which by exactness of the top row,

gives us an element α ∈ Br(L/K) ⊂ Br(K) such that α = (αv). Therefore the bottom sequence is

exact at the centre. Exactness at the left was shown in section 2, meanwhile exactness at the right is

obvious, so we get,

Theorem 4.2 (Fundamental Exact Sequence of Global Class Field Theory). For every number field

K, the sequence,

0 → Br(K) →
⊕
v

Br(Kv)
inv1

K−−−→ Q/Z → 0

is exact.

Moreover, the commutativity of the right square in theorem 1.4 combined with the fact that sum

of local degrees is the global degree gives us:

Lemma 4.3. For any finite extension [L : K] of number fields of degree n, we have the following

commutative diagram,

0 Br(K)
⊕

v Br(Kv) Q/Z 0

0 Br(L)
⊕

v

(⊕
w|v Br(Lw)

)
Q/Z 0

inv1
K

×n

inv1
L

Comparing the bottom rows of the diagram 3 with the fundamental exact sequences K and L, we

obtain unique injective maps inv2K : Q/Z → H2(K) for all number fields K satisfying,

⊕
v Br(Kv) H2(K)

Q/Z

inv1
K

inv2
K
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and then the diagram in the last lemma gives us,

0 0

0 1
nZ/Z H2(L/K)

0 Q/Z H2(K)

0 Q/Z H2(L)

inv2
K

×n

inv2
L

with exact rows and columns. But we know from theorem 1.2 that H2(L/K) has order atmost

n, so the map inv2K restricted to 1
nZ/Z is an isomorphism onto H2(L/K). Denote its inverse by

invL/K : H2(L/K)
∼−→ 1

nZ/Z. Taking direct limit of invL/K over all Galois extensions L/K we find

that the map inv2K is also an isomorphism, again denoting its inverse by invK : H2(K)
∼−→ Q/Z.

For any finite Galois extension L/K of number fields, let uL/K = inv−1
L/K

(
1

[L:K]

)
. Then it generates

H2(L/K) and is called the fundamental class. Note that uL/K = inv−1
L/K

(
1

[L:K]

)
= inv−1

K

(
1

[L:K]

)
,

so if we have a tower of extensions E ⊃ L ⊃ K, and Res : H2(K) → H2(L) is the restriction map,

then invL(Res(uE/K)) = [L : K] invK(uE/K) = 1
[]E:L] , which means uE/L = Res(uE/K). So we have

shown the following,

Theorem 4.4. For every finite Galois extension of number fields L/K, H2(L/K) is cyclic of order

[L : K] with a canonical generator given by the fundamental class uL/K , compatible under restrictions.

Although one can prove the reciprocity law in a more direct fashion using our discussion on cyclic

cyclotomic extensions, with the fundamental class established, we can also now use Tate’s theorem to

obtain an isomorphism,

Gal(L/K)ab → CK/NmCL

which can be shown to be the inverse to the Artin map.
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