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Introduction

The Modularity theorem associates to a given elliptic curve defined over
the field Q of rational numbers, a newform f such that the Tate module
of the elliptic curve agrees with the Galois representation attached to f
by Eichler, Shimura, Deligne and Serre. From the point of view of the
Langlands program, one views newforms as automorphic representations of
GL2(AQ). In this light, we give an explicit description of a local analogue
of this; starting with an elliptic curve over a non-Archimedean local field F ,
we consider its Tate module and via the Local Langlands Correspondence
for the group GL2, attach to it a irreducible smooth representation of
GL2(F ). We give an explicit description of the obtained representation in
terms of the reduction type of the elliptic curve mod p, the maximal ideal
of F , as mentioned in [Buz].
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Chapter 1

Smooth Representations

In this chapter, we define the notion of smooth representations for locally
profinite groups. One side of the Local Langlands Correspondence for GL2

are smooth irreducible representations of GL2(F ) for a non-Archimedean
local field F , so we discuss those in some detail.

1.1 Locally Profinite Groups

Definition. A locally profinite group is a topological group G such that
its identity has a neighbourhood basis consisting of compact open subgroups.

Note that we assume all our topological groups to be Hausdorff. This
is a fairly large class of groups, for instance it contains all discrete groups
and profinite groups. In fact, compact locally profinite groups are exactly
profinite groups, hence the name locally profinite. One can easily check
that closed subgroups, quotients by closed normal subgroups and products of
locally profinite groups are locally profinite. Now we go over some examples,
establishing notation to be used throughout the rest of this document.

� The additive group of a non-Archimedean local field F .
F is the field of fractions of a complete discrete valuation ring oF
with a finite residue field k. Let vF : F× → Z be the valuation on F ,
and q be the cardinality of the residue field of characteristic p. The
normalized absolute value is given by,

||x|| = q−vF (x), x ∈ F×, ||0|| = 0

This induces a metric and topology on F . The fractional ideals

pn = {x ∈ F | ||x|| ≤ q−n}, n ∈ Z

are open subgroups, topologically isomorphic to oF and hence com-
pact. So we have,

Proposition. The additive group F is locally profinite, and F is the
union of its compact open subgroups.
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1.2. Smooth Representations of Locally Profinite Groups

� The multiplicative group F× is also locally profinite. The subgroups
UF = o×F and UnF = 1 + pn, n ≥ 1, are compact open and gives a
neighbourhood basis of 1 in F×.

� The vector space Fn = F×· · ·×F is locally profinite, in particular the
ring of n×n matrices Mn(F ) is locally profinite under addition. More-
over G = GLn(F ) is an open subset of Mn(F ), inversion of matrices is
continuous, so G is a topological group. The subgroups

K = GLn(oF ), Kj = 1 + pj Mn(oF ), j ≥ 1,

are compact open, and give a neighbourhood basis of identity, so G is
locally profinite.

1.2 Smooth Representations of Locally Profinite
Groups

Throughout this section, G denotes a locally profinite group. We temporar-
ily work over an arbitrary field C, however we will soon switch to C.

Definition. Let (π, V ) be a representation of G over C, that is, V is an
C-vector space and π : G → AutC(V ) is a group homomorphism. We say
(π, V ) is smooth, if the action map aπ : G×V → V given by (g, v) 7→ π(g)v
is continuous with the discrete topology on V . We will often denote the
representation (π, V ) by just π.

For a representation (π, V ) of G and a subset S of G, denote by V S the
subspace of π(S)-invariant elements of G, i.e.,

V S := {v ∈ V | ∀g ∈ S, π(g)v = v}

Then we have the following equivalent condition for smoothness:

Lemma 1.2.1. Let (π, V ) be a representation of G over C. Then π is
smooth iff every vector in V is fixed by a compact open subgroup, that is,

V =
⋃
K

V K

where the union is over compact open subgroups K of G.

3



1.2. Smooth Representations of Locally Profinite Groups

Proof. Let π be smooth. For any vector v ∈ V , its stabilizer Gv := {g ∈ G |
π(g)v = v} = a−1

π ({v})∩ (G×{v}) is open by continuity of aπ. But since G
is locally profinite, Gv contains a compact open subgroup K, or equivalently
v ∈ V K .
Let V = ∪KV K . It suffices to show that a−1

π ({w}) is open for every w ∈ V .
Let (g, v) ∈ a−1

π ({w}), that is, g ∈ G, v ∈ V such that π(g)v = w. By
hypothesis, v ∈ V K for some compact open subgroup K of G. Then
gK × {v} is an open neighbourhood of (g, v) contained in a−1

π ({w}). There-
fore a−1

π ({w}) is open.

We will essentially only use this equivalent condition when working with
smooth representations.

Given a smooth representation (π, V ), then any G-subspace (or π-
subspace when π is not-obvious) W (i.e. π(g)w ∈ W ∀g ∈ G,w ∈ W )
of V is also a smooth representation. Further, there is a natural represen-
tation of G on the quotient V/W , which is also smooth.

Definition. A smooth representation (π, V ) is irreducible if V ̸= 0 and V
has no G-stable subspace other than V and 0.

Typically we’ll deal with infinite dimensional representations. However,
they might be satisfy a weak finiteness condition.

Definition. A smooth representation (π, V ) is admissible if V K is finite
dimensional for each compact open subgroup K of G.

Definition. The category RepC(G) of smooth representations of G
over C is the category consisting of the class of smooth representations of
G over C as its objects, with morphisms given by G-linear maps, that is,
Hom((π1, V1), (π2, V2)) consists of linear maps f : V1 → V2, satisfying

f ◦ π1(g) = π2(g) ◦ f, g ∈ G

We will denote Hom((π1, V1), (π2, V2)) by Hom(π1, π2) or HomG(π1, π2)
when the underlying group is not obvious.
In chapter 2 we will also consider be the full subcategory RepfC(G) on
finite-dimensional smooth representations of G.

We point out that Rep(G) (resp. Repf (G)) is an abelian category, since
its a full subcategory of the category of all representations of G over C, and
is closed under direct sums, kernels and cokernels.
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1.2. Smooth Representations of Locally Profinite Groups

We now take a look at what smooth representations look like in some
simple cases.

Discrete groups are locally profinite, and for their representations, the
smoothness condition is trivially satisfied. Something similar happens for
more general locally profinite groups if the vector space is finite dimensional:

Proposition 1.2.2. Let (π, V ) be a finite dimensional representation of a
locally profinite group G. Then π is smooth iff kerπ is open, equivalently, π
factors through a discrete group.

Proof. Let π be smooth. Consider a basis {vi}ni=1 of V . If vi is fixed by
the compact open subgroup Ki, then the compact open subgroup K = ∩iKi

fixes all of V and hence lies in the kernel. Therefore kerπ is a open subgroup
of G and the group G/ kerπ is discrete.
If kerπ is open then the smoothness of π is trivial since every vector is fixed
by kerπ which must contain a compact open subgroup since G is locally
profinite.

We can do slightly better if the group is compact, i.e., profinite.

Proposition 1.2.3. Let G be a profinite group.

(i) Let (π, V ) be a cyclic smooth representation of a profinite group G,
that is, V is the G-space generated by a single vector v ∈ V . Then V
is finite dimensional.

(ii) Let (τ, V ) be a finite dimensional representation of G. Then τ is
smooth iff ker τ is open, equivalently, τ factors through a finite group.

Proof. Let v ∈ V such that V is the G-space spanned by v. Since π is
smooth, v is fixed by a compact open subgroup K. Since G is compact,
(G : K) is finite, hence {π(g)v | g ∈ G} = {π(g)v | g ∈ G/K} is finite.
This set spans V , so V is finite dimensional. Part (ii) is an immediate
consequence of the previous proposition and the fact that compact discrete
groups are finite.

This means that cyclic (in particular irreducible) smooth representations
of profinite groups are exactly cyclic (resp. irreducible) representations of
its finite quotients.

At this point we will restrict ourselves to just the case of L = C. We will
also suppress the suppress the subscript and denote the category of complex
smooth representations of G by just Rep(G).

5



1.2. Smooth Representations of Locally Profinite Groups

Remark. Most of the general theory works for arbitrary uncountable and
algebraically closed C of characteristic zero. The definition of smooth repre-
sentation at no point refers to a topology on the base field, in particular if C
is a field abstractly isomorphic to C, then ”changing scalars” gives an (addi-
tive) equivalence of categories between RepC(G) and Rep(G). In particular,
any result about representations in Rep(G) gets carried over to RepC(G).
In the next chapter, we will be using this for C = Qℓ.

Proposition 1.2.4. A representation (χ,C) is smooth iff χ : G →
AutC(C) = C× is continuous.

Proof. Let (χ,C) be a smooth representation of G. Since χ is smooth, 1 is
fixed by a compact open subgroup K of G. The vector 1 spans C, K fixes
all of C, so χ : G→ AutC(C) = C× contains K in its kernel, in particular χ
is a continuous homomorphism from G to C×.
Now let χ be continuous. Take a small neighbourhood U of 1 in C× such
that U does not contain any non-trivial subgroups of C×. Then χ−1(U) is a
neighbourhood of identity in G, hence it contains a compact open subgroup
H of G. But the image of H under χ is a subgroup of C× contained in U , so
it must be the trivial subgroup. This means that the kernel of χ contains H,
so the compact open subgroup H fixes all of C and hence χ is smooth.

For an arbitrary topological group G, continous homomorphisms to C×

are called characters, so the proposition can be stated as one-dimensional
smooth representations of locally profinite groups are exactly their charac-
ters.

We introduce a size restriction on the group G to help us generalize
familiar results to this setting:

Definition. We call a locally profinite group G small, if for any compact
open subgroup K of G, the set G/K is countable.

Remark. It suffices to check the countability for just one compact open
subgroup K. For any other compact open subgroup K ′, K ∩K ′ is compact,
open, and has finite index in K and K ′. So G/K ∩K ′ surjects onto G/K
and G/K ′ with both surjections having finite fibres. As a consequence, G/K
is countable iff G/K ′ is countable.
Note that this definition is not standard, and just made for making some
statements convenient.

An easy consequence of this hypothesis is:

6



1.2. Smooth Representations of Locally Profinite Groups

Lemma 1.2.5. Let (π, V ) be an irreducible smooth representation of a small
group G. Then V has countable dimension.

Proof. Let v ∈ V , v ̸= 0. Then v ∈ V K for some compact open subgroup K
of G. Since V is irreducible, it is spanned by {π(g)V | g ∈ G/K} which is
countable.

Proposition 1.2.6 (Schur’s Lemma). Let (π, V ) be an irreducible smooth
representation of a small group G, then EndG(V ) = C.

Proof. For any non-zero G-endomorphism ϕ, the image and kernel of ϕ are
both G-subspaces of V . So ϕ is bijective and hence invertible. Therefore
EndG(V ) is a complex division algebra.
Fix v ∈ V, v ̸= 0. The C-linear map from EndG(V ) to V given by ϕ 7→ ϕ(v)
is injective, since if ϕ(v) = 0, then its kernel is a non-zero G-subspace hence
all of V . By the previous lemma, V has countable dimension, hence so does
EndG(V ). But if ϕ ∈ EndG(V ), ϕ ̸∈ C, then it generates a transcendental
extension C(ϕ) over C inside EndG(V ), which has uncountable dimension
over C. (For example, {(ϕ− a)−1 | a ∈ C} is linearly independent)

Corollary 1.2.6.1. Let (π, V ) be an irreducible smooth representation of a
small group G. The centre Z of G, then acts on V via a character ωπ : Z →
C×, that is, π(z)v − ωπ(z)v, for v ∈ V and z ∈ Z.

Proof. For any smooth representation (π, V ) of G, there is a group homo-
morphism Z → EndG(V )×, given by z 7→ ϕz, where ϕz ∈ EndG(V ) given
by ϕz(v) = π(z)v. If V is irreducible, by Schur’s Lemma, this becomes a
homomorphism ωπ : Z → C×. Moreover, if K is a compact open subgroup
of G such that V K ̸= 0, for z ∈ K∩Z, v ∈ V K , ωπ(z)v = ϕz(v) = π(z)v = v,
which implies ωπ(z) = 1. Therefore the compact open subgroup K ∩Z of Z
lies in the kernel of ωπ, that is, ωπ is a character of Z.

The character ωπ is called the central character of π.

Corollary 1.2.6.2. If G is an abelian small group, then all its irreducible
smooth representations are one-dimensional

Proof. Follows immediately from the previous corollary.

Characters of the additive group of a local field

We consider the additive group of a local field F to see some of these ideas
in action. Let F be a local field. Then its ring of integers o is a compact

7



1.2. Smooth Representations of Locally Profinite Groups

open subgroup, and F/o = ∪n≥0p
−n/o. But p−n/o is finite for each n, so

F/o is countable, and hence F is small. Therefore irreducible smooth rep-
resentations of F are exactly its characters. We give a complete description
of the set of characters F . It forms a group under multiplication, which we
denote by F̂ .

Definition. Let ψ ∈ F̂ , ψ ̸= 1. Then the level of ψ is the least integer d
such that p ⊂ kerψ.

Proposition 1.2.7 (Additive Duality). Let ψ ∈ F̂ , ψ ̸= 1, have level d.

(i) Let a ∈ F . The map aψ : x 7→ ψ(ax) is a character of F , and if a ̸= 0,
aψ has level d− vF (a).

(ii) The map a 7→ aψ is a group isomorphism F ∼= F̂ .

Proof. Part (i) is an easy verification.
For part (ii), we have

(a+ b)ψ(x) = ψ((a+ b)x) = ψ(ax)ψ(bx) = (aψ(x))(bψ(x))

so a 7→ aψ is a group homomorphism. Moreover, if aψ = 1, then ψ(ax) = 1
for all x ∈ F , which is only possible if a = 0 since ψ ̸= 1. Thus, a 7→ aψ is
injective.
To get surjectivity, let θ ∈ F̂ , θ ̸= 1 be of level l, and ϖ be a prime element
of F . The character ϖd−lψ has level l, and hence agrees with θ on pl. We
now inductively construct elements ui ∈ UF , such that uiϖ

d−lψ agrees with
θ on pl−i and ui+1 ≡ ui (mod pi).
Start with u0 = 1. Assume we have constructed u0, . . . , ui as required above.
The character θi = θ ·(uiϖd−lψ)−1 is trivial on pl−i. If θi is trivial on pl−i−1,
set ui+1 = ui. If not, then consider the map

UF → ̂pl−i−1/pl−i

v 7→ vϖd−l+iψ |pl−i−1

where ̂pl−i−1/pl−i denotes characters of pl−i−1 which are trivial on pl−i. For
v, v′ ∈ UF , vϖd−l+iψ |pl−i−1= v′ϖd−l+iψ |pl−i−1 iff ((v − v′)ϖd−l+iψ) |pl−i−1

has level atmost l − i − 1 iff v ≡ v′ (mod U1
F ). Therefore, the map above

induces an injective map from UF /U
1
F to ̂pl−i−1/pl−i. But the image of this

map consists only of non-trivial characters because all of those characters

have level l − i. Since (UF : U1
F ) = | ̂pl−i−1/pl−i − {1}| = q − 1, the map is

8



1.2. Smooth Representations of Locally Profinite Groups

surjective. Thus, there exists vi ∈ UF , viϖd−l+iψ agrees with θi on pl−i−1.
Then ui+1 = ui + viϖ

i satisfies the required conditions.
By completeness of F , there exists a u ∈ UF such that u ≡ ui (mod pi).
One can check that θ = uϖd−lψ.

1.2.1 Semisimplicity

Complex representations of finite groups are semisimple, i.e., they are a
direct sum of irreducible representations. The same is not true for all smooth
representations of locally profinite groups. We can however, recover some
nice properties by restricting to compact open subgroup.

Proposition 1.2.8. Let (π, V ) be a smooth representation of a locally profi-
nite group G. The following are equivalent:

(i) V is a sum of its irreducible G-subspaces

(ii) V is the direct sum of a family of irreducible G-subspaces

(iii) any G-subspace of V has a G-complement in V .

Proof. The proof follows a standard argument used to show similar equiv-
alences in many different contexts, for example, semisimplicity of modules
over rings. For details, one can see Proposition 2.2 in [BH06].

Definition. LetH be a closed subgroup of a locally profinite group G. Then
a smooth representation (π, V ) of G is called H-semisimple if it satisfies
the conditions of the previous proposition as a smooth representation of H.
If H = G, we just say semisimple instead of G-semisimple.

Semisimplicity of a smooth representation can be checked on a finite
index closed subgroup:

Lemma 1.2.9. Let (π, V ) be a smooth representation of G. If H is a fi-
nite index open subgroup of G and the π is H-semisimple, then it is G-
semisimple.

We will see later than the converse is also true, using the notion of
induced representations.

Proof. Suppose U is aG-subspace of V . Then it is anH-subspace, and hence
by H-semisimplicity, has an H-complement in V , say W . Let f : V → U

9



1.2. Smooth Representations of Locally Profinite Groups

be the projection with kernel W , this is an H-map. For a set of coset
representatives {gi}ki=1 for G/H, consider the map,

fG : v 7→ 1

(G : H)

k∑
i=1

π(gi)f(π(g
−1
i )v), v ∈ V

Since f is H-equivariant, the definition above does not depend on the choice
of representatives gi. In particular, for any v ∈ V and g ∈ G,

fG(π(g)v) =
1

(G : H)

k∑
i=1

π(gi)f(π(g
−1
i )π(g)v)

= π(g)

(
1

(G : H)

k∑
i=1

π(g−1gi)f(π((g
−1gi)

−1)v)

)
= π(g)fG(v)

since {g−1gi}ki=1 form a set of coset representatives for G/H. Hence, fG is
a G-map. Moreover, it is easy to see that if v ∈ U , fG(v) = v, i.e., fG is a
projection onto U . We conclude that ker fG is a G-complement of U in V ,
and further that V is G-semisimple.

Remark. A reader experienced in representation theory of finite groups
might have noticed some similarity in proof above and the proof of Maschke’s
theorem on semisimplicity of complex representations of finite groups. In
fact, applying the previous lemma with a finite (discrete) group for G and
H as its trivial subgroup, one obtains Maschke’s theorem on noting that for
discrete groups, all representations are smooth and that all representations
of the trivial group are semisimple.

Lemma 1.2.10. Let G be a locally profinite group, and K a compact open
subgroup of G. Then all smooth representations of G are K-semisimple. In
particular, if G is profinite, all its smooth representations are semisimple.

Proof. Let (π.V ) be a smooth representation of G. It suffices to show that
every v ∈ V is contained in a sum of irreducible K-subspaces of V . This
follows from using proposition 1.2.3 on the K-subspace of V generated by
v, seen as a cyclic smooth representation of the profinite group K, and
Maschke’s theorem (see remark above).

Again, let G be a locally profinite group with a closed subgroup H. Let
Ĥ be the set of equivalence classes of irreducible smooth representations of
H.

10



1.2. Smooth Representations of Locally Profinite Groups

Definition. Let ρ ∈ Ĥ, and (π, V ) be a smooth representation of G. The
ρ-isotypic component of V , denoted by V ρ, is defined to be the sum of
all irreducible H-subspaces of V of class ρ.

Note that V H is the isotypic component for the trivial representation of
H.

Proposition 1.2.11. Let (π, V ) be a smooth representation of G which is
H-semisimple for some closed subgroup H of G.

(i) V is the direct sum of its H-isotypic components.

V =
⊕
ρ∈Ĥ

V ρ

(ii) Let (σ,W ) be a smooth representation of G, and f : V → W be a
G-homomorphism. Then for all ρ ∈ Ĥ,

f(V ρ) ⊂W ρ and W ρ ∩ f(V ) = f(V ρ)

Proof. Using lemma 1.2.10, V is a direct sum of a family {Ui}i∈I of irre-
ducible H-subspaces. Let U(ρ) be the sum of those Ui which are in the class
ρ. Then we have

V =
⊕
ρ∈K̂

U(ρ)

IfW is an irreducible H-subspace of V of class ρ, then the inclusionW → V
composed with the projection V → Ui is non-zero iff Ui is also in class ρ, oth-
erwise there will be a non-zero homomorphism between two non-isomorphic
irreducible representations of H. Therefore U(ρ) = V ρ. Similar arguments
can be used to show (ii).

As corollaries we get,

Corollary 1.2.11.1. A sequence

U V Wa b

of G-homomorphisms between smooth representations U, V and W of G is
exact iff

UK V K WKa b

is exact for every compact open subgroup K of G.

11



1.2. Smooth Representations of Locally Profinite Groups

Proof. Follows from the fact that V is K-semisimple for all compact open
subgroups K of G, along with part (ii) of the previous proposition and that
for a smooth representation V , V = ∪KV K .

Corollary 1.2.11.2. Let (π, V ) be a smooth representation of G, and K be
a compact open subgroup of G. Let

V (K) = linear span of {v − π(h)v | v ∈ V, h ∈ K}

Then,

V (K) =
⊕
ρ∈K̂
ρ̸=1

V ρ, V = V K ⊕ V (K),

and V (K) is the unique K-complement of V K in V .

Proof. Let W =
⊕

ρ∈K̂,ρ̸=1
V ρ. Then by the previous proposition, W is

K-complement of V K . Therefore, there is a K-surjection V → V K with
kernel W . Since K acts trivially on V K , V (K) must lie in the kernel of this
surjection. Meanwhile, if U is an irreducible K-subspace of V of class ρ ̸= 1,
then U = U(K) ⊂ V (K). Therefore V (K) =W .

1.2.2 Operations on Smooth representations

We consider smooth analogues of some basic operations on representations.

1.2.3 Induction

We discuss the notion of induced representations in this setting. Let G be
a locally profinite group, and (σ,W ) be a smooth representation of a closed
subgroup H of G. Consider the space X of functions f : G → W which
satisfy:

(i) f(hg) = σ(h)f(g), h ∈ H, g ∈ G

(ii) there exists a compact open subgroup K of G such that f(gk) = f(g),
for g ∈ G, k ∈ K.

We define a representation of G on W as follows. Let Σ : G→ AutC(X) be
given by,

Σ(g)f : x 7→ f(xg)

Then (Σ, X) is a smooth representation of G, precisely because of the con-
dition (ii) above.

12



1.2. Smooth Representations of Locally Profinite Groups

Definition. The representation (Σ, X) constructed above from (σ,W ) is
called the representation of G smoothly induced by σ, and is denoted by
IndGH σ.

The map σ 7→ IndGH σ gives a functor IndGH : Rep(H) → Rep(G). This
comes with a natural H-homomorphism,

ασ : IndGH σ →W

f 7→ f(1)

There is also a functor ResGH : RepG → RepH, which takes a smooth rep-
resentation of G and views it as an H representation, called the restriction
of the original representation to H. We will often write simply π for ResGH π
where its clear what group we are considering π as a representation of. The
functors ResGH and IndGH form an adjoint pair:

Proposition 1.2.12 (Frobenius Reciprocity). Let H be a closed subgroup
of a locally profinite group G. The smooth induction functor IndGH is right-
adjoint to the restriction functor ResGH . More precisely, given smooth repre-
sentations (σ,W ) of H and (π, V ) of G, the map

HomG(π, Ind
G
H σ)→ HomH(π, σ)

f 7→ ασ ◦ f

is an isomorphism which is functorial in both variables π, σ.

Proof. Let t : V → W be an H-homomorphism. Consider the G-
homomorphism t∗ : V → Indσ given by t∗(v)(g) 7→ t(π(g)v). Then t 7→ t∗
is the inverse to the map above. We omit the proof of functoriality.

We can consider a slight variation on above, where we consider the sub-
space Xc of X consisting of functions f ∈ X which are compactly supported
modulo H; that is

suppf := {g ∈ G | f(g) ̸= 0} ⊂ HC

for some compact subset C of G. The subspace Xc is G-stable.

Definition. The subrepresentation of IndGH σ given by the subspace Xc is
called the representation of G compactly induced or smoothly induced
with compact supports by σ, and is denoted by c-IndGH σ.

13



1.2. Smooth Representations of Locally Profinite Groups

As before, σ 7→ c-IndGH σ gives a functor c-IndGH : Rep(H) → Rep(G).
By definition, the compact induction is defined as a subspace of the smooth
induction, giving a natural transformation c-IndGH → IndGH . Its easy to see
that this is an isomorphism iff H\G is compact. Compact Induction satisfies
a version of Frobenius Reciprocity with H is an open subgroup. In this case,
there is natural H-homomorphism,

αcσ :W → c-IndGH σ

w 7→ fw

where fw(g) =

{
σ(g)w g ∈ H
0 g ̸∈ H

.

We’ll use the following description of c-IndGH σ:

Lemma 1.2.13. Let (σ,W ) be a smooth representation of an open subgroup
H of G. Then,

(i) The map αcσ is an H-isomorphism from W to the subspace of c-IndGH σ
consisting of functions supported inside H.

(ii) Let W be a C-basis of W and G a set of representatives for G/H. The
set {gfw | w ∈ W, g ∈ G} is a C-basis of c-Indσ.

Proposition 1.2.14 (Frobenius Reciprocity). Let H be an open subgroup
of a locally profinite group G. Then the compact induction functor c-IndGH
is left adjoint to the restriction functor ResGH . More precisely, given smooth
representations (σ,W ) of H and (π, V ) of G, the map

HomG(c-Ind
G
H σ, π)→ HomH(σ, π)

f 7→ f ◦ αcσ

is an isomorphism which is functorial in both variables.

Proof. Let t be an H-homomorphism W → V . Set t∗ : c-Indσ → V as
t∗(gfw) = πt(w), w ∈ W . The map t 7→ t∗ is the inverse of the map above.
Again, we omit the proof of functoriality.

Both the induction functors are quite well-behaved:

Proposition 1.2.15. For any closed subgroup H of a locally profinite group
G, the functors IndGH and c-IndGH are additive and exact.

14



1.2. Smooth Representations of Locally Profinite Groups

Under nice conditions, semisimplicity is preserved by induction. First,
we need the promised converse to lemma 1.2.9:

Lemma 1.2.16. Let H be a finite index open subgroup of G, and (σ, V ) be
a semisimple smooth representation of G. Then σ is H-semisimple.

Proof. Since V can be written as a direct sum of irreducible
G-subrepresentations, we reduce to the case where V is irreducible
over G. Moreover, H0 =

⋂
g∈G/H gHg

−1 ⊂ H is an open normal subgroup
of finite index in both H and G, so using lemma 1.2.9, we reduce to the
case H = H0 is normal in G.

Now, V is generated by a single non-zero vector over G, and hence by
its translates by coset representatives of G/H over H; in particular it has
a finite generating set over H. A standard Zorn’s lemma argument implies
the existence of a maximal H-subspace not containing all the generators,
quotient by which gives a non-trivial irreducible H-quotient (σ |H , V ) →
(τ, U). By Frobenius Reciprocity, we get a G-map V → IndGH τ , which must
be injective, since its non-trivial, so kernel isn’t all of V , and V is irreducible
over G. But IndGH τ = c-IndGH τ = ⊕g∈G/Hτ g as an H-representation, where
τ g(x) = τ(g−1xg) is the conjugate of τ by g (see lemma 1.2.13(ii)). The
representations τ g are irreducible, so IndGH τ is H-semisimple. Hence its
G-subspace V is also H-semisimple.

Proposition 1.2.17. Let H be a finite index open subgroup of G, and (σ, V )
be a smooth representation of H. Then IndGH σ is G-semisimple iff σ is H-
semisimple.

Proof. If IndGH σ is G-semisimple, it is H-semisimple by the previous lemma.
But then so is σ, since it appears as quotient via the map ασ.

Now assume that σ is H-semisimple instead. Consider the finite index
open normal subgroup H0 =

⋂
g∈G/H gHg

−1 ⊂ H as in the lemma above.
Then starting with the identity map σ → σ, functorially, we get the following
maps,

σ → IndHH0
σ

IndGH σ → IndGH IndHH0
σ = IndGH0

σ

The first map is H-equivariant, and it can be easily seen to be injective by
working out the definitions. The second map is obtained by applying IndGH
to the first, and hence is also injective. Now σ is H0-semisimple (lemma
1.2.9), so by decomposing it into a direct sum of irreducibles over H0 and
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1.2. Smooth Representations of Locally Profinite Groups

then writing IndGH0
σ as a sum of G-conjugates of these irreducibles, one sees

that IndGH0
σ is also H0-semisimple. This implies that its G-subspace IndGH σ

is also H0-semisimple, and hence G-semisimple by the previous lemma.

1.2.4 Duality

We consider the notion of a dual representation of a smooth representation.
Let (π, V ) be a smooth representation of a locally profinite group G. Set
V ∗ = HomC(V,C).
The space V ∗ comes with a representation π∗ of G given by π∗(g) = π(g−1)∗,
where π(g−1)∗ denotes the transpose of π(g−1) given by v∗ 7→ v∗ ◦ π(g−1)
for all g ∈ G, v∗ ∈ V ∗. This representation is generally not smooth. Thus,
as in the definition of smooth induction, we consider only those elements
which are fixed by a compact open subgroup of G. We define,

V̌ =
⋃
K

(V ∗)K

One can check that V̌ is a G-stable subspace of V . Denote the subrepresen-
tation on V̌ by (π̌, V̌ ).

Definition. The smooth representation (π̌, V̌ ) is called the contragredient
or smooth dual of (π, V ).

We denote the evaluation map V̌ × V → C as a pairing ⟨v̌, v⟩ = v̌(v).
Then the representation π̌ satisfies

⟨π̌(g)v̌, v⟩ = ⟨v̌, π(g−1)v⟩, g ∈ G, v̌ ∈ V̌ , v ∈ V

Proposition 1.2.18. For any compact open subgroup K of G, restriction
to V K induces an isomorphism V̌ K ∼= (V K)∗.

Proof. Let v̌ ∈ V̌ K . For v ∈ V, k ∈ K,

⟨v̌, v − π(k)v⟩ = ⟨v̌, v⟩ − ⟨π̌(k−1)v̌, v⟩ = 0

since v̌ ∈ V̌ . Therefore ⟨v̌, V (K)⟩ = 0. By corollary 1.2.11.2, V = V K ⊕
V (K). Thus, v̌ is determined by its values on V K , making the restriction
map injective. Moreover, any linear functional on V K can be extended to
an element of V̌ K by defining it to be zero on V (K).

Corollary 1.2.18.1. Let (π, V ) be a smooth representation of G, and v ∈
V, v ̸= 0. Then there exists v̌ ∈ V̌ such that ⟨v̌, v⟩ ≠ 0.
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1.2. Smooth Representations of Locally Profinite Groups

Proof. Any nonzero v ∈ V lies in V K for some compact open subgroup K.
The corollary follows from the previous proposition and the fact that there
exists a functional f on V K such that f(v) ̸= 0.

We consider now the smooth dual (ˇ̌π, ˇ̌V ) of (π̌, V̌ ). There is a canonical

G-map δ : V → ˇ̌V given by,

⟨δ(v), v̌⟩V̌ = ⟨v̌, v⟩V , v ∈ V, v̌ ∈ V̌ .

where ⟨·, ·⟩V̌ and ⟨·, ·⟩V denote the evaluation pairing for ˇ̌V on V̌ and V̌ on
V respectively. This map is injective by corollary 1.2.18.1.

Proposition 1.2.19. Let (π, V ) be a smooth representation of a locally

profinite group G. The map δ : V → ˇ̌V as defined above is an isomorphism
iff π is admissible.

Proof. By corollary 1.2.11.1, the map δ is an isomorphism iff the induced

maps δK : V K → ˇ̌V K are isomorphisms for all compact open subgroups K
of G. But by proposition 1.2.18, δK is just the usual canonical map from
the vector space V K and its double dual (V K)∗∗, which is an isomorphism
iff V K is finite dimensional.

Now we construct the smooth dual functor. Let (π, V ), (σ,W ) be smooth
representations of G, and f : V → W be a G-map. We can define a map
f̌ : W̌ → V̌ as follows,

⟨f̌(w̌), v⟩ = ⟨w̌, f(v)⟩, w̌ ∈ W̌ , v ∈ V

The map f̌ is a G-homomorphism, giving us a contravariant functor from
Rep(G) to itself, given by (π, V ) 7→ (π̌, V̌ ).

Proposition 1.2.20. The smooth dual functor is exact.

Proof. Given an exact sequence of smooth representations (πi, Vi) of G,

0→ V1 → V2 → V3 → 0

by corollary 1.2.11.1, the sequence

0→ V K
1 → V K

2 → V K
3 → 0

is exact for any compact open subgroup K of G. Taking duals is exact for
vector spaces, so using proposition 1.2.18, we get that the sequence

0→ V̌ K
3 → V̌ K

2 → V̌ K
1 → 0

is exact, which again from corollary 1.2.11.1 gives us that the sequence of
smooth duals of Vi is exact.
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Proposition 1.2.21. Let (π, V ) be an admissible representation of G. Then
(π, V ) is irreducible iff (π̌, V̌ ) is irreducible.

Proof. It follows from the previous proposition that if a representation is re-
ducible, so is its dual. The result then follows from the fact that an admissi-
ble representation is isomorphic to its double dual (Proposition 1.2.19).

1.2.5 Haar Measure

We go on a temporary digression about Haar measures on locally profinite
groups which will be useful to us later. The almost discrete nature of the
topology of profinite groups makes it so that their measure theory can be
dealt with algebraically if we restrict ourselves to locally constant functions.
We won’t give proofs, but they can be found in section 3 of [BH06]. Let G
be a locally profinite group. Denote by C∞

c (G), the space of locally constant
complex-valued functions on G with compact support. The group G acts by
left translation λ and right translation ρ on C∞

c (G):

λ(g)f : x 7→ f(g−1x)

ρ(g)f : x 7→ f(xg)

for g ∈ G, f ∈ C∞
c (G). The representations (C∞

c , λ) and (C∞
c , ρ) are

smooth.

Definition. A right Haar integral on G is a non-zero linear functional
I : C∞

c (G)→ C satisfying,

(i) I(ρ(g)f) = I(f) for all g ∈ G, f ∈ C∞
c (G), and

(ii) I(f) ≥ 0 for any f ∈ C∞
c (G) such that f ≥ 0

A left Haar integral is defined similarly, with ρ replaced by λ in (i).

Proposition 1.2.22. There exists a right Haar integral on any locally profi-
nite group G. Moreover, if I and I ′ are two right Haar integrals, then I ′ = cI
for some c > 0.

For any f ∈ C∞
c (G), define (̌f) ∈ C∞

c (G) as f̌(g) = f(g−1). Then for
any right Haar integral I, I ′ : C∞

c (G)→ C defined as, I ′(f) = I(f̌), is a left
Haar integral, since I ′(λ(g)f) = I(ρ(g)f̌) = I(f̌) = I ′(f). Similarly, for any
left Haar integral J , J ′ : C∞

c (G) → C defined as, J ′(f) = I(f̌) is a right
Haar integral. So from the previous proposition, we get:
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Proposition 1.2.23. There exists a left Haar integral on any locally profi-
nite group G. Moreover, if I and I ′ are two left Haar integrals, then I ′ = cI
for some c > 0.

Let I be a left Haar integral on G. For any compact open subset S of
G, let ΓS be its characteristic function. Define,

µI(S) = I(ΓS)

Definition. The function µI on compact open subsets of G as defined above
in terms of a left Haar integral I is called a left Haar measure. A right
Haar measure can be defined similarly.

One can recover I from µI . Any f ∈ C∞
c (G) can be written

as f =
∑k

i=1 aiΓSi , where ai ∈ C, Si are compact open sets. So

I(f) =
∑k

i=1 aiµI(Si). The relationship between I and µI is denoted via
the traditional notation:

I(f) =

∫
G
f(g)dµI(g), f ∈ C∞

c (G)

Lemma 1.2.24. (i) µI is finitely additive, i.e., µI(S1
∐
S2) = µI(S1) +

µI(S2), for disjoint compact open subsets Si of G.

(ii) µI(gS) = µI(S) for any g ∈ G, and compact open S ⊂ G.

(iii) µI(S) > 0 for any non-empty compact open S ⊂ G.

Proof. Parts (i) and (ii) are clear from the definition. Any non-empty com-
pact open set S is a finite union of left translates of compact open subgroups
and given any two compact open subgroups H and H ′ of G, writing them

both as a union of cosets of H ∩H ′, we get µI(H) = (H:H∩H′)
(H′:H∩H′)µI(H

′). So if

µI(H) = 0 for any compact open subgroup H, then µI(H
′) = 0 for all com-

pact open subgroups H ′ and hence all compact open sets S, contradicting
that I ̸= 0.

Let I be a left Haar integral on G. For a g ∈ G, consider Ig : C∞
c (G)→ C

defined as, Ig(f) = I(ρ(g)f). Then Ig is also a left Haar integral, since
Ig(λ(g

′)f) = I(ρ(g)(λ(g′)f)) = I(λ(g′)(ρ(g)f)) = I(ρ(g)f) = Ig(f) (left
and right translation actions commute). By uniqueness of Haar integrals

19



1.2. Smooth Representations of Locally Profinite Groups

Ig = δG(g)I for some δG(g) ∈ R×
+. Now pick another element h ∈ G. Then

we have,
I(ρ(g)ρ(h)f) = I(ρ(gh)f) = Igh(f) = δG(gh)I(f)

I(ρ(g)ρ(h)f) = Ig(ρ(h)f) = δG(g)I(ρ(h)f) = δG(g)Ih(f) = δG(g)δG(h)I(f).

for any f ∈ C∞
c (G). Therefore δG(gh) = δG(g)δG(h), and hence δG : G →

R×
+ is a group homomorphism. It is easy to see that δG does not depend on

the choice of I.

Definition. The group homomorphism δG : G → R×
+ defined as above is

called the module of G.

Let K be a compact open subgroup of G, and k ∈ K. Then
δG(k)µI(K) = Ik(ΓK) = I(ΓK) = µI(K). Since µI(K) > 0 by the previous
lemma, δG(k) = 1, so δG is trivial on any compact open subgroup of G. In
particular, δG is a character.

Definition. A locally profinite group G is called unimodular if its module
δG is trivial.

One immediately concludes from the definitions,

Proposition 1.2.25. A locally profinite group G is unimodular iff every left
Haar integral is also a right Haar integral.

We immediately conclude that abelian groups have trivial module.
Moreover, since only compact subgroup of R×

+ is trivial and the module
is a character, compact groups are unimodular. In case the group in
consideration is unimodular, we will drop the prefixes left and right from
the Haar integrals and meassures.

Finally, we state without proof a couple results, one about invariant
measures on quotient spaces, and another about the interaction of dual
functors with the induction functors. Let G be a profinite group and H be
a closed subgroup of G. Define

δH\G = δ−1
H δG |H : H → R×

+

Further, let (ρ, C∞
c (H\G, δH\G)) = c-IndGH δH\G, i.e, the space of functions

f : G→ C which are fixed by a compact open subgroup of G, are compactly
supported modulo H, and satisfy f(hg) = δH\G(h)f(g), h ∈ H, g ∈ G, under
the right translation action ρ.
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Proposition 1.2.26. There exists a non-zero functional IH : C∞
c (H\G, δH\G)→

C such that:

(i) IH(ρ(g)f) = IH(f), for f ∈ C∞
c (H\G, δH\G), g ∈ G.

(ii) IH(f) ≥ 0, for f ∈ C∞
c (H\G, δH\G), f ≥ 0.

These conditions determine IH upto a positive constant factor.

One uses notation:

IH(f) =

∫
H\G

f(g)dµH\G(g), f ∈ C∞
c (H\G, δH\G)

and calls µH\G a positive semi-invariant measure on H\G.

Theorem 1.2.27 (Duality Theorem). Let µ̇ be a positive semi-invariant
measure on H\G, and (σ,W ) be a smooth representation of H. There is a
natural isomorphism,

(c-IndGH σ)
∨ ∼= IndGH(δH\G ⊗ σ̌)

depending only on the choice of µ̇.

1.3 Smooth Representations of GL2(F )

We finally discuss the case of G = GL2(F ), where F is a non-Archimedean
local field.

1.3.1 Subgroups of GL2(F )

Let B, N and T denote the standard Borel subgroup, its unipotent radical
and the standard maximal split torus in G, respectively. More explicitly:

B =

{(
∗ ∗
0 ∗

)
∈ G

}
, N =

{(
1 ∗
0 1

)
∈ G

}
T =

{(
∗ 0
0 ∗

)
∈ G

}
We have a semi-direct product decomposition B = T ⋉ N . Also set K0 =
GL2(oF ).
We collect here some facts about Haar measures on G and its subgroups.

Proposition 1.3.1. Let µ be a Haar measure on F .
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(i) ∥x∥−1dµ is a Haar measure on F×. More precisely, for f ∈ C∞
c (F×),

the function x 7→ f(x)∥x∥−1 (with the value 0 at x = 0) lies in C∞
c (F ),

and

f 7→
∫
F
f(x)∥x∥−1dµ(x)

is a Haar integral on F×.

(ii) µ(aS) = ∥a∥µ(S) for every compact open subset S of F and a ∈ F×.

(iii) For a ∈ F×, ∫
F
f(ax)dx = ∥a∥−1

∫
F
f(x)dx

Let A = M2(F ) as an additive group. Then A ∼= F × F × F × F , hence
all Haar measures on A can be obtained by taking a product of 4 copies of
a Haar measure on F .

Proposition 1.3.2. Let µA be a Haar measure on A. For f ∈ C∞
c (G), the

function x 7→ f(x)∥detx∥−2 (with the value zero on A\G) lies in C∞
c (A).

Moreover, the functional

f 7→
∫
A
f(x)∥detx∥−2dµA(x)

is a left and right Haar integral on G. In particular, G is unimodular.

Now we discuss the groups B, N and T . Since N ∼= F and T ∼= F××F×,
their Haar measures are easily obtained from Haar measures for F and F×.

Proposition 1.3.3. The functional

f 7→
∫
T

∫
N
f(tn)dµN (n)µT (t), f ∈ C∞

c (B)

is a left Haar integral on B, where µN and µT are Haar integrals on N and
T respectively. Moreover, the group B is not unimodular, with the module
δB given by,

δB(tn) = ∥t2/t1∥, n ∈ N, t = ( t1 0
0 t2

) ∈ T

We now discuss some useful decompositions of G and their consequences.

Theorem 1.3.4 (Iwasawa decomposition). G = BK0.
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Proof. Let g = ( a bc d ) ∈ G. If c = 0, g ∈ B. Otherwise, multiplying on the
right by a permutation matrix in K0 lets us assume v(c) ≥ v(d), where v =
vF is the valuation on F . But then multiplying on the right by ( 1 0

−c/d 1 ) ∈ K0

we can again make the lower left entry zero.

Since K0 is compact, an immediate consequence of this is that B\G is
compact. In particular,

Corollary 1.3.4.1. For any smooth representation σ of B, the natural in-
clusion c-IndGB σ → IndGB σ is an isomorphism.

Since G is unimodular, δG is trivial. Hence δB\G = δ−1
B . Then from the

duality theorem and the previous corollary,

Corollary 1.3.4.2 (Duality theorem). Let σ be a smooth representation of
B. Fix a positive semi-invariant measure on C∞

c (B\G, δ−1
B ). There is a

canonical isomorphism,

(IndGB σ)
∨ ∼= IndGB(δ

−1
B ⊗ σ̌)

Theorem 1.3.5 (Cartan decompostion). Let ϖ be a prime element of F .
The matrices (

ϖa 0
0 ϖb

)
, a, b ∈ Z, a ≤ b

form a set of representatives for the double coset space K0\G/K0.

Proof. We will only show that the matrices as above represent all the cosets,
and not that they represent distinct cosets, since that is enough for our
application. Given g = ( a bc d ) ∈ G, upto permutation matrices in K0, we can
assume that d has the largest absolute value. Then, by multiplying to the
right and left by ( 1 0

−c/d 1 ) and ( 1 −b/d
0 1

) respectively, we get a diagonal matrix
in the same double coset. Then, multiplying by a diagonal matrix with unit
entries, we get a matrix of the form as in the statement.

Corollary 1.3.5.1. G, B, N , T and K0 are all small.

Proof. From the Cartan decomposition it follows that the double coset de-
composition K0\G/K0 is countable. But any double coset K0gK0 is a union
of finitely many cosets g′K0 since K0gK0 is compact and K0 is open. Thus
G/K0 is countable and G is small. Its easy to see that if H is a closed
subgroup of G, then H/H ∩ K0 injects into G/K0, showing that closed
subgroups of small groups are small.
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1.3.2 Jacquet Module and the Principal Series

Let (π, V ) be a smooth representation of G, and let V (N) denote the sub-
space spanned by vectors of the form v − π(n)v, for v ∈ V, n ∈ N . Since
N is normal in B, V (N) is a B-subspace. Thus, VN := V/V (N) inherits a
(smooth) representation πN of B/N = T (since N must act trivially).

Definition. The representation (πN , VN ) is called the Jacquet module of
(π, V ) at N .

The map (π, V ) 7→ (πN , VN ) gives a functor from Rep(G) to Rep(T )
called the Jacquet functor, which is exact and additive (see Lemma 8.1 in
[BH06]).

Definition. An irreducible smooth representation (π, V ) of G is said to be
in the principal series or called a principal series representation if
πN ̸= 0, otherwise it is said to be cuspidal.

Let (σ,W ) be a smooth representation of T . We can view this as a
representation of B which is trivial on N , and consider the representation
Indσ := IndGB σ. If (π, V ) is a smooth representation of G, by Frobenius
Reciprocity, we have

HomG(π, Indσ) ∼= HomB(π, σ)

But N acts trivially on σ, so any B-map from V to W will factor through
V (N), so we have

HomG(π, Indσ) ∼= HomB(π, σ) ∼= HomT (πN , σ)

We will use the above to get a useful description of the principal series
representations.

Proposition 1.3.6. Let (π, V ) be an irreducible smooth representation of
G. The following are equivalent:

(i) π is in the principal series,

(ii) π is isomorphic to a G-subspace of a representation of the form Indχ,
for some character χ of T .

Proof. From the discussion above, if χ in any character of T ,

HomG(π, Indχ) ∼= HomT (πN , χ)
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Since π is irreducible, any non-zero G-map from π to Indχ is going to give
an isomorphism from π to a G-subspace of Indχ. So (ii) is equivalent to the
left hand side being non-zero for some χ.
Moreover, any non-zero map from πN to χ is going to be a surjection, since
χ is one dimensional. Meanwhile, any irreducible representation of T is a
character, since T is (small) abelian. So RHS being non-zero is equivalent
to πN having an irreducible (T-)quotient, which is equivalent to (i) once we
show that if πN ̸= 0 then it must have an irreducible quotient.
Pick v ∈ V , v ̸= 0. Since V is irreducible over G, V is generated by just
v over G. Now since π is smooth, v is fixed by a compact open subgroup
K ′. By the Iwasawa decomposition, G = BK0, so V is generated over B by
finitely many vectors {π(k)v | k ∈ K0/K0 ∩K ′} = {v1, . . . , vk}, and hence
VN is generated over T by their images {v̄1, . . . , v̄k}
By an easy Zorn’s lemma argument, there exists a T -subspace U of VN
which is maximal with the property v̄i ̸∈ U . Then the quotient VN/U is an
irreducible T -quotient of VN .

An easy corollary is the admissibility of representations in the principal
series:

Corollary 1.3.6.1.

(i) For any finite-dimensional representation (σ,W ) of B, IndGB σ was
admissible.

(ii) All representations in the principal series are admissible.

Proof. Since characters of T are finite-dimensional representations of B,
and subrepresentations of admissible representations are admissible, (ii) is
an immediate consequence of (i) and the previous proposition.
For (i), let K be a compact open subgroup of G and (π, V ) = IndGB σ.
Then since V K ⊂ V K∩K0 , it suffices to show V K is finite-dimensional for
compact open subgroups K contained in K0. Since K and K0 are compact
open, (K0 : K) is finite. Iwasawa decomposition implies that B\G/K =
B\BK0/K =

∐r
i=1BgiK is a finite double coset decomposition. Therefore

the map f 7→ {f(gi)}ki=1 from V K to W⊕k is injective, and hence V K has
finite dimension.

1.3.3 Classification of the Principal Series

We state the complete classification of the irreducible principal series rep-
resentations. Proofs can be found in sections 9.6-9.11 of [BH06]. Given any
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1.3. Smooth Representations of GL2(F )

character χ of T , then χ = χ1⊗χ2 for characters χi of F
×. More explicitly:

χ :

(
a 0
0 b

)
7→ χ1(a)χ2(b)

Then we have the following result:

Theorem 1.3.7 (Irreducibility Criterion). Let χ = χ1 ⊗ χ2 be a character
of T . The representation IndGB χ is reducible iff χ1χ

−1
2 is either the trivial

character or the square of the norm character (i.e. x 7→ ∥x∥2).

We describe what happens in the reducible cases:

� If χ1χ
−1
2 is trivial, then χ = ϕT := ϕ ◦det for some character ϕ of F×.

For ϕ = 1, there exists an exact sequence,

0→ 1G → IndGB 1T → StG → 0

where the map 1G → IndGB is given by z going to the constant function
with the value z and StG is an irreducible representation of G called
the Steinberg representation. For general ϕ,

0→ ϕG → IndGB ϕT → ϕG · StG → 0

where ϕT is ϕG restricted to T .

� If χ1χ
−1
2 is square of the norm character. Then χ = δ−1

B · ϕG for some
character ϕ of F×. Exactness of the smooth dual functor (1.2.20) and
the duality theorem give the following exact sequence by taking duals
of the sequence above,

0→ (StG)
∨ → IndGB(δ

−1
B · ϕT )→ ϕG → 0

Using adjunction properties of the functor IndGB, one can show
(StG)

∨ ∼= StG, so no new irreducible representation is obtained in this
case.

We list out all the irreducible principal series representations. First, we
introduce some notation which will be helpful later on. For any smooth
representation σ of T , define

ιGBσ = IndGB(δ
−1/2
B ⊗ σ)

Definition. The functor ιGB : Rep(T ) → Rep(G) is called normalized or
unitary smooth induction.
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1.3. Smooth Representations of GL2(F )

If χ = χ1 ⊗ χ2 is a character of T , let χw denote the character χ2 ⊗ χ1

of T .

Theorem 1.3.8 (Classification of Irreducible Principal Series Representa-
tions). The following is a complete list of isomorphism classes of irreducible
representations of GL2(F ) in the principal series.

(i) the induced representations ιGBχ, where χ ̸= ϕG · δ
± 1

2
B for any character

ϕ of F×.

(ii) the one-dimensional representations ϕG = ϕ◦det, where ϕ ranges over
the characters of F×.

(iii) the representations ϕ · StG, where ϕ ranges over the characters of F×.

The classes in the list above have no overlaps, except that in (i), ιGBχ
∼= ιGBχ

w.

Note that with this notation, the duality theorem says

(ιGBσ)
∨ ∼= ιGBσ̌

For any smooth representation σ of B. Combining this with the self duality
of the Steinberg representation, StG, we can see that the dual of a principal
series representation is also in the principal series. It follows from the ad-
missibility of all smooth irreducible representations of G and propositions
1.2.19 and 1.2.21, that duals of cuspidal representations are also cuspidal.

1.3.4 L-functions and local constants

To any irreducible representation π of G, we attach a pair of invariants
L(π, s) and ϵ(π, s, ψ), following Godement and Jacquet, extending Tate’s
classical theory for GL1. We will not give proofs for most of the results in
this section. They can be found in chapter 6 of [BH06].

Throughout this section, fix a non-trivial character ψ ∈ F̂ , and set ψA =
ψ ◦ trA, where trA : A = M2(F )→ F denotes the trace function.

Definition. The Fourier transform Φ̂ of a function Φ ∈ C∞
c (A) relative

to a Haar measure µA on A, is defined by the integral,

Φ̂(x) =

∫
A
Φ(y)ψA(xy)dµ

A(y)

Proposition 1.3.9.
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1.3. Smooth Representations of GL2(F )

(i) For Φ ∈ C∞
c (A), the function Φ̂ also lies in C∞

c (A).

(ii) For a given ψ, there is a unique Haar measure µAψ such that

ˆ̂
Φ(x) = Φ(−x) ,Φ ∈ C∞

c (A), x ∈ A

(iii) Let M =M2(oF ). The measure µAψ is determined by

µAψ (M) = q2l

where l is the level of ψ.

Proof. Let Φi,a ∈ C∞
c (A) denote the characteristic function of a + piM for

a ∈ A, i ∈ Z. These functions span C∞
c (A), so it suffices to show (i) and (ii)

for them. First we only consider Φi := Φi,0. As noted in section 1.3.1, Haar
measures on A are given by product of Haar measures on four copies of F .
Then it follows:

Φ̂i

(
a b
c d

)
=

∫
A
Φi(y)ψA

((
a b
c d

)
y

)
dµ(y)

=

∫
F

∫
F

∫
F

∫
F
Φi

(
p q
r s

)
ψA

((
a b
c d

)(
p q
r s

))
dpdqdrds

=

∫
pi

∫
pi

∫
pi

∫
pi
ψ(ap+ br + cq + ds)dpdqdrds

=

∫
pi
ψ(ap)dp

∫
pi
ψ(br)dr

∫
pi
ψ(cq)dq

∫
pi
ψ(ds)ds

where dp, dq, dr and ds are copies of a Haar measure µ on F . We compute
one of the four terms, the computation for the rest follows similarly. If
a ∈ pl−i, then ap ∈ pl ⊂ kerψ for all p ∈ pi, hence we get that the first term
above is equal to µ(pi).
If a ̸∈ pl−i, then api ̸⊂ kerψ, hence there exists p0 ∈ pi such that ψ(ap0) ̸= 1.
But then by the translation invariance of dp,∫

pi
ψ(ap)dp =

∫
pi
ψ(a(p+ p0))dp = ψ(ap0)

∫
pi
ψ(ap)dp

so the integral is zero. Using properties of Haar measures on F (proposition
1.3.1). it follows that

Φ̂i = µ(pi)4Φl−i = q−4iµ(oF )
4Φl−i = q−4iµA(M)Φl−i ∈ C∞

c (A)
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1.3. Smooth Representations of GL2(F )

Now we consider Φi,a. Using the translation invariance of µA we get,

Φ̂i,a(x) =

∫
A
Φi,a(y)ψA(xy)dµ

A(y)

=

∫
A
Φi(y − a)ψA(xy)dµA(y)

=

∫
A
Φi(y)ψA(x(y + a))dµA(y) = ψA(xa)Φ̂i ∈ C∞

c (A)

for x ∈ A, which gives us (i). For (ii) and (iii), we compute
ˆ̂
Φi,a:

ˆ̂
Φi,a(x) =

∫
A
ψA(ya)q

−4iµA(M)Φl−i(y)ψA(xy)dµ
A(y)

Since ψA = ψ ◦ trA, ψA(ya) = ψA(ay). This gives,

ˆ̂
Φi,a(x) = q−4iµA(M)

∫
A
Φl−i(y)ψ((x+ a)y)dµA(y)

= q−4iµA(M)Φ̂l−i(x+ a)

= q−4lµA(M)2Φi(x+ a)

= q−4lµA(M)2Φi,a(−x)

Parts (ii) and (iii) immediately follow.

Definition. For a non-trivial character ψ ∈ F̂ , the unique Haar measure
µAψ satisfying

ˆ̂
Φ(x) = Φ(−x) x ∈ A,Φ ∈ C∞

c (A)

as given by the last proposition is called the self dual Haar measure on
A, relative to ψ.

We give a few more definitions. Let (π, V ) be a smooth representation
of G. For v ∈ V, v̌ ∈ V̌ , one can construct a function on G as,

γv̌⊗v : g 7→ ⟨v̌, π(g)v⟩

Definition. The vector space C(π) of functions spanned by the functions
γv̌⊗v, v̌ ∈ V̌ , v ∈ V is called the space of (matrix) coefficients of π.

Now let (π, V ) be an irreducible smooth representation of G and µ∗ be
a Haar measure on G. For Φ ∈ C∞

c (A) and f ∈ C(π), consider the integral,

ζ(Φ, f, s) =

∫
G
Φ(x)f(x)∥detx∥sdµ∗(x)
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1.3. Smooth Representations of GL2(F )

Theorem 1.3.10. Let (π, V ) be an irreducible representation of G.

(i) There exists s0 ∈ R such that the integral defining ζ(Φ, f, s) converges,
absolutely and uniformly in vertical strips in the region ℜs > s0, for
all Φ and f . The integral represents a rational function in q−s.

(ii) Define
Z(π) = {ζ(Φ, f, s+ 1

2) : Φ ∈ C
∞
c , f ∈ C(π)}

There is a unique polynomial Pπ(X) ∈ C[X], satisfying Pπ(0) = 1,
and

Z(π) = Pπ(q
−s)−1C[qs, q−s]

.

Definition. The L-function L(π, s) of an irreducible representation (π, V )
of G is given by

L(π, s) = Pπ(q
−s)−1

where Pπ(X) ∈ C[X] is the polynomial given by the theorem above.

Next, we state the functional equation satisfied by the functions
ζ(Φ, f, s). For f ∈ C(π), denote by f̌ the function g 7→ f(g−1). Note that

for v ∈ V, v̌ ∈ V̌ , γ̌v̌⊗v = γδ(v)⊗v̌ ∈ C(π̌), where δ : V → ˇ̌V is the natural
isomorphism between an admissible representation and its double dual
(1.2.19). It follows that f 7→ f̌ gives a linear isomorphism between C(π)
and C(π̌).

Theorem 1.3.11. Let (π, V ) be an irreducible smooth representation of G.
There exists a unique rational function γ(π, s, ψ) ∈ C(q−s) such that

ζ(Φ̂, f̌ , 32 − s) = γ(π, s, ψ)ζ(Φ, f, 12 + s) (1.1)

for all Φ ∈ C∞
c (A), f ∈ C(π).

Definition. The local constant ε(π, s, ψ) of a smooth irreducible repre-
sentation of G is a function defined by,

ε(π, s, ψ) = γ(π, s, ψ)
L(π, s)

L(π̌, 1− s)

Corollary 1.3.11.1. The local constant ε(π, s, ψ) satisfies the functional
equation,

ε(π, s, ψ)ε(π̌, 1− s, ψ) = ωπ(−1) (1.2)

where ωπ is the central character of π. Moreover, there exist a ∈ C× and
b ∈ Z such that ε(π, s, ψ) = aqbs.
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1.3. Smooth Representations of GL2(F )

We need a couple lemmas.

Lemma 1.3.12. For any Haar measure µ∗ on G,∫
G
Φ(−x)dµ∗(x) =

∫
G
Φ(x)dµ∗(x) Φ ∈ C∞

c (A)

Proof. The map Φ 7→
∫
GΦ(−x)dµ∗(x) also defines a Haar integral. The

result follows from using the uniqueness of Haar integrals and setting Φ to
be the characteristic function of K0.

Lemma 1.3.13. For f ∈ C(π), z ∈ Z, g ∈ G, f(zg) = ωπ(z)f(g).

Proof. Since C(π) is spanned by γv̌⊗v, v̌ ∈ V̌ , v ∈ V , it suffices to prove the
statement for f = γv̌⊗v. But then,

γv̌⊗v(zg) = ⟨v̌, π(zg)v⟩ = ωπ(z)⟨v̌, π(g)v⟩ = ωπ(z)γv̌⊗v(g)

Proof of Corollary 1.2. Using the functional equation 1.1 twice, once for
(Φ̂, f̌) and for (Φ, f),

ζ(
ˆ̂
Φ, f, 12 + s) = γ(π̌, 1− s, ψ)ζ(Φ̂, f̌ , 32 − s)

= γ(π̌, 1− s, ψ)γ(π, s, ψ)ζ(Φ, f, 12 + s)

= ε(π̌, 1− s, ψ)ε(π, s, ψ)ζ(Φ, f, 12 + s)

Using Fourier inversion and the lemmas above,

ζ(
ˆ̂
Φ, f, s) =

∫
G
Φ(−x)f(x)∥detx∥sdµ∗(x)

=

∫
G
Φ(x)f(−x)∥det(−x)∥sdµ∗(x) (by lemma 1.3.12)

= ωπ(−1)
∫
G
Φ(x)f(x)∥detx∥sdµ∗(x) (by lemma 1.3.13)

= ωπ(−1)ζ(Φ, f, s)

Plugging this into the functional equation obtained above, (1.2) follows. To
show that ε(π, s, ψ) is of the required form, first note that we have

L(π, s) =
r∑
i=1

ζ(Φi, fi, s+
1
2)
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1.3. Smooth Representations of GL2(F )

for some Φi ∈ C∞
c (A), fi ∈ C(π) by definition of L(π, s). The definition of

ε(π, s, ψ) combined with the functional equation 1.1 then gives,

ε(π, s, ψ) = L(π̌, 1− s)−1
r∑
i=1

ζ(Φ̂i, f̌i,
3
2 − s)

The right hand side lies in C[qs, q−s] by the defining property of the L-
function L(π̌, s). Similarly, ε(π̌, 1 − s, ψ) lies in C[qs, q−s]. But then the
functional equation 1.2 implies that ε(π, s, ψ) is a unit in C[qs, q−s], and
hence it must be of the required form.

Recall Additive Duality: a 7→ aψ is an isomorphism F ∼= F̂ . The L-
function does not depend on the chosen character ψ, meanwhile the local
constant is effected in a very controlled manner:

Proposition 1.3.14. Let (π, V ) be an irreducible smooth representation of
G, and a ∈ F×. Then,

ε(π, s, aψ) = ωπ(a)∥a∥2s−1ε(π, s, ψ)

L-functions and local constants form essentially complete invariants for
irreducible smooth representations of G.

Theorem 1.3.15 (Converse Theorem). Let π1, π2 be irreducible smooth rep-
resentations of G. Suppose that

L(χπ1, s) = L(χπ2, s) ε(χπ1, s, ψ) = ε(χπ2, s, ψ),

for all characters χ of F×. Then we have π1 ∼= π2.

We will later give a proof of a slight strengthening of the converse the-
orem for the principal series representations, after stating theit L-functions
and local constants. To state these invariants for representations of GL2, we
first need the same for the case of GL1.

L-functions and local constants for GL1

Since GL1(F ) = F× is a small locally profinite group, its irreducible smooth
representations are exactly its characters. An account of the GL1 theory in
the notation of this document can be found in section 23 of [BH06]. First a
few definitions,

Definition. The level of character χ of F× is defined to be the least integer
n ≥ 0 such that Un+1

F ⊂ kerχ.
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1.3. Smooth Representations of GL2(F )

Definition. A character χ is said to be unramified, if its trivial on UF .

The L-functions are easy to describe:

Proposition 1.3.16. Let χ be a character of F× and ϖ be a prime element
of F . Then,

L(χ, s) =

{
(1− χ(ϖ)q−s)−1 if χ is unramified,

1 otherwise.

Now, for the local constants,

Proposition 1.3.17. Let χ be an unramified character of F×, ψ be of level
one and ϖ be a prime element of F . Then,

ε(χ, s, ψ) = qs−
1
2χ(ϖ)−1

Proposition 1.3.18. Let χ be a character of level n ≥ 0 which is not
unramified, and ψ be of level one. Then,

ε(χ, s, ψ) = q
n
(
1
2−s

) ∑
x∈UF /U

n+1
F

χ(αx)−1ψ(αx)/q
(n + 1)/2

for any α ∈ F× such that vF (α) = −n.

L-functions and local constants GL2

Theorem 1.3.19. Let χ = χ1 ⊗ χ2 be a character of the group T , and let
π be an irreducible principal series representation which is a G-composition
factor of ιGBχ. For any ψ ∈ F̂ , ψ ̸= 1, we have

L(π, s) = L(χ1, s)L(χ2, s)

ε(π, s, ψ) = ε(χ1, s, ψ)ε(χ2, s, ψ)

except when π ∼= χ · StG, for an unramified character χ of F×. In this
exceptional case,

L(π, s) = L(χ, s+ 1
2), ε(π, s, ψ) = −ε(χ, s, ψ)

Proposition 1.3.20. (i) Let (π, V ) be an irreducible principal series rep-
resentation of GL2(F ). Then there exists a character χ of F× such
that the L-function L(χπ, s) is not constant.
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1.3. Smooth Representations of GL2(F )

(ii) (Converse Theorem for the Principal Series) Let πi, i = 1, 2 be irre-
ducible principal series representations of GL2(F ). Then if

L(χπ1, s) = L(χπ2, s)

for all characters χ of F×, then π1 ∼= π2.

Proof. (i) Let π be a composition factor of ιGBχ for a character χ = χ1 ⊗ χ2

of T . Then χ−1
1 π is a composition factor of ιGB(1 ⊗ χ−1

1 χ2), and thus
L(χ−1

1 · π, s) is cannot be a constant function.

(ii) We prove that an irreducible principal series representation π is
determined by the map χ 7→ L(χπ, s) using the description of the L-
functions in theorem 1.3.19. Suppose there exists a character χ of F× such
that the L(χπ, s) has degree 2. Then L(χπ, s) = L(χ1, s)L(χ2, s) for some
unramified characters χ1, χ2 of F×.
If χ1χ

−1
2 ̸= ∥·∥±1, then ιGB(χ1⊗χ2) is irreducible by theorem 1.3.8, therefore

π ∼= χ−1ιGB(χ1 ⊗ χ2) = ιGB(χ
−1χ1 ⊗ χ−1χ2).

Otherwise {χ1, χ2} = {ϕ∥·∥
1
2 , ϕ∥·∥−

1
2 } for some unramified character ϕ of

F×, in which case π = χ−1ϕ ◦ det.
Now suppose L(χπ, s) has degree atmost 1 for all characters χ. By (i), there
exists a χ such that L(χπ, s) has degree 1. Then χπ is of the form ιGB(θ

′⊗θ)
for an unramified character θ and a ramified character θ′ or χπ is of the
form θ StG for an unramified character θ. The cases can be distinguished by
the existence of an ramified character ϕ such that L(ϕχπ, s) is not constant,
since in the first case, we can take ϕ = θ′−1 and in the second case, no
such ϕ exists. In the latter case, π ∼= χ−1θ StG, where θ is determined by
L(χπ, s) = L(θ, s+ 1

2).
In the former case, suppose L(χπ, s) = L(θ, s) and L(ϕχπ, s) = L(θ′′, s) for
unramified characters θ and θ′′ and a ramified character θ. Then we must
have π ∼= χ−1ιGB(θ

′′ϕ−1 ⊗ θ).

Theorem 1.3.21. Let (π, V ) be an irreducible cuspidal representation of
GL2(F ). Then its L-function is trivial, that is,

L(π, s) = 1
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Chapter 2

Weil-Deligne
Representations

We now take a look at the arithmetic side of Local Langlands, starting with
a look into the structure of the absolute Galois group of a non-Archimedean
local field.

2.1 Absolute Galois group of a local field

Fix a separable closure F̄ of a non-Archimedean local field F , and let ΩF =
Gal(F̄ /F ). We recall some facts from Galois theory. Galois groups are
profinite with a natural (Krull) topology, given by

ΩF = lim←−Gal(E/F )

as E/F ranges over finite Galois extensions contained in F̄ . We fix the
convention that any field extension of F is contained inside F̄ . Such field
extensions K/F are in natural bijection with closed subgroups of ΩF which
can be identified with ΩE . Moreover, K/F is finite iff ΩE is open, and in
this case (ΩF : ΩE) = [K : F ].
We collect here some facts about extensions of F . There is tower of exten-
sions;

E Gal(F̄ /E)

F̄

F tr

F ur

F

e

PF

IF

ΩF

⊂
⊂

⊂

Here F ur and F tr denote the maximal unramified and maximal tamely
ramified extensions of F respectively. Their corresponding subgroups IF
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2.1. Absolute Galois group of a local field

and PF of ΩF are called the inertia and the wild inertia groups of F .
We describe them in more detail.
Any F -automorphism of F̄ induces a kF -automorphism of kF̄ , where kE
denotes the residue field of an extension E of F . The residue field kF̄ is an
algebraic closure of kF . Since kF is a finite field of order q, this induces a
map,

VF : ΩF → Gal(kF̄ /kF )
∼= Ẑ (2.1)

where the last isomorphism given by sending the inverse of the Frobenius
automorphism (x 7→ xq) to 1, and Ẑ = lim←−n Z/nZ denotes the profinite
completion of Z. This map is surjective, and the kernel of this map is the
inertia group IF . The corresponding extension F ur is generated by nth roots
of unity for all n ∈ N prime to p := char(kF ). The map VF induces a short
exact sequence of topological groups,

1 IF ΩF Ẑ 1
VF (2.2)

Definition. The element ΦF ∈ Gal(F ur/F ) which acts as the inverse of the
Frobenius on the residue field is called the geometric Frobenius substi-
tution on F ur. It is the unique element of Gal(F ur/F ) = ΩF /IF satisfying
VF (ΦF ) = 1.
A lift of ΦF to ΩF is called a (geometric) Frobenius element (over F).

Next, for each integer n ≥ 1, p ∤ n, there is a unique extension En/F ur

of degree n. If ϖ is a prime element of F , En is generated by an nth root
of ϖ. The extension F tr is the composite of the extensions En. Note that
F tr is normal over F as well, since it is generated by the splitting fields of
xn −ϖ for all n prime to p.
We describe the Galois group Gal(F tr/F ur) = IF /PF . Let α ∈ En such
that αn = ϖ. Then there is an isomorphism,

Tn : Gal(Kn/F
ur)→ µn

σ 7→ σ(α)/α,
(2.3)

where µn is the group of nth-roots of unity. This isomorphism does not
depend on the choice of α. Taking inverse limits we get a topological iso-
morphism,

IF /PF ∼= lim←−
p∤n

µn
∼=
∏
ℓ ̸=p

Zℓ (2.4)

where the last isomorphism is given by the Chinese Remainder Theorem.
The extension F ur/F is abelian, however F tr/F is not. The Galois group
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Gal(F tr/F ) = ΩF /PF acts by conjugation on IF /PF . But IF /PF is abelian,
so the action factors through ΩF /IF . The maps in 2.4 give a topological
isomorphism between IF /PF and

∏
ℓ̸=p Zℓ. We can use this isomorphism to

give a more explicit description of the conjugation action.

Proposition 2.1.1. If T : IF /PF →
∏
ℓ̸=p Zℓ is a topological isomorphism,

then
T (ΦFσΦ

−1
F ) = q−1t(σ), σ ∈ IF /PF

Proof. Any such topological isomorphism must differ from the one in 2.4
by multiplication by an element of

∏
ℓ ̸=p Z

×
ℓ . So without loss of generality,

we assume that T is the isomorphism in 2.4. Then it suffices check that
the maps Tn (2.3) satisfy Tn(ΦσΦ

−1) = Tn(σ)
r for all σ ∈ Gal(Kn/F

ur),
where rq ≡ 1(mod n), for an element Φ ∈ Gal(Kn/F ) which maps to ΦF ∈
Gal(F ur/F ).
Let α ∈ Kn such that αn = ϖ. Then Φ−1(α) = ζα, for some nth root of
unity ζ ∈ F ur. So we have,

Tn(ΦσΦ
−1) = Φ(σ(ζ))Φ(σ(α))/α

= Φ(ζ)Φ(Tn(σ)α)/α (ζ ∈ F ur, Tn(σ)α = σ(α))

= Φ(ζα)Φ(Tn(σ))/α

= Φ(Tn(σ))

Note that reducing modulo the maximal ideal in the ring of integers for F ur

gives an isomorphism between the groups of nth roots of unity of F ur and its
residue field kFur . Since the Frobenius acts on the residue field by taking qth

powers, the inverse of the Frobenius takes nth roots of unity in the residue
field to their rth powers. It follows that Φ(Tn(σ)) = Tn(σ)

r.

Hence, we have a fairly explicit description of ΩF /PF . Every finite
extension of F tr has p-power degree, since they “come from” totally wildly
ramified extensions of tamely ramified extensions of F . Therefore, PF =
Gal(F̄ /F tr) is a pro p-group; in fact, it is the unique pro p-Sylow subgroup
of IF .

Next, we’ll see a description of abelianisation of ΩF .

2.2 Local Class Field Theory and the Weil Group

We state the local reciprocity law from local class field theory, which gives
an essentially complete description of the abelian extensions of F . This
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2.2. Local Class Field Theory and the Weil Group

will serve both as motivation for the definition of the Weil Group, and a
tool to transfer Tate’s theory of L-functions and local constants for GL1 to
characters of the Weil group. First, we define some notation:

Definition. For a topological group G, we denote by Gc its commutator
subgroup, that is the (normal) subgroup generated by elements of the form
ghg−1h−1, g, h ∈ G. The abelianisation ofG, denoted byGab, is the largest
(Hausdorff) abelian quotient of G, given by G/Gc, that is, the quotient of
G by the closure of its commutator.

Theorem 2.2.1 (Local Reciprocity). Let F be a non-Archimedean local
field. There exists a continuous group homomorphism

θF : F× → Gal(F ab/F ) ∼= ΩabF

where F ab is the maximal abelian extension of F , determined by the following
properties:

(i) θF composed with ΩabF
VF−−→ Ẑ is the negative of the valuation map

vF : F× → Z.

(ii) For any finite extension E of F contained in F ab, if α ∈ F× is a norm
from K×, then θF (α) ∈ Gal(F ab/F ) acts trivially on E.

It further satisfies the following properties:

(iii) θF maps UF isomorphically onto Gal(F ab/F ur) = IF /ΩcF , and U1
F

onto Gal(F ab/F ab ∩ F tr) = PFΩcF /ΩcF .

(iv) Let E ⊂ F̄ be a finite extension of F . Then the following diagrams
commute:

E× ΩabE

F× ΩabF

θE

NE/F i

θF

(2.5)

F× ΩabF

E× ΩabE

θF

verE/F

θE

(2.6)

where i is the induced by the inclusion of ΩE into ΩF and verE/F is
the transfer homomorphism or the ”Verlagerung”.

Remark. The negative sign in the property (i) of the reciprocity map
shows up because in the definition of VF we used the negative of usual
isomorphism Ẑ ∼= Gal(kF̄ /kF ); we mapped 1 to the inverse of the Frobenius
map x 7→ xq.
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2.2. Local Class Field Theory and the Weil Group

The proofs of the above statements can be found in the chapter 6 of
[CF67]. The reciprocity map almost completely describes the maximal
abelian quotient ΩabF of ΩF . To try to describe the non-abelian part, one
considers representations of ΩF .
The reciprocity map lets us view characters of ΩF as characters of F×. The
property (iii) of the map implies that the image of the reciprocity map is
dense in Gal(F ab/F ), so no distinct characters end up getting identified.
However, F× has strictly more characters; the norm character cannot pos-
sibly come from a character of ΩF , since the compactness of ΩF forces all
its characters to have bounded image. To account for such characters, we
replace the Galois group with the Weil group.

Definition. The Weil groupWF of F (relative to F̄ /F ) is the topological
group with the underlying abstract group given by the subgroup V −1

F (Z) of
ΩF , and the initial topology such that the inclusion iF :WF → ΩF and the
induced map VF : WF → Z are continuous, where Z is seen as a discrete
group. It is easy to see that this topology is determined by the following:

(i) IF is an open subgroup of WF .

(ii) The topology on IF as a subspace of WF agrees with its topology as
the subgroup IF = Gal(F̄ /F ur) ⊂ ΩF .

Remark. As an abstract subgroup of ΩF , WF is generated by a Frobe-
nius element Φ and IF . Its given topology, however, is not the subspace
topology induced from ΩF ; in the subspace topology, any neighbourhood
of identity contains must contain finite index subgroup, which the neigh-
bourhood IF does not. Moreover, WF is locally profinite but not compact.
The local profinite-ness follows from the profinite group IF forming an open
neighbourhood of identity. The lack of compactness is immediate from the
fact that the map VF restricts to give a surjective continuous map from WF

to the infinite discrete group Z. Since the kernel of VF is the compact open
subgroup IF , we see that WF is small in the sense of chapter 1.
The Weil groups behave much like Galois groups. The map iF :WF → ΩF
is a continuous homomorphism with a dense image (It is the inverse image
of the dense subset Z under the open map VF ).

Proposition 2.2.2.

(i) Let E/F be a finite extension, E ⊂ F̄ . Denote by WE
F , the subgroup

of WF given by i−1
F (ΩE).
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2.2. Local Class Field Theory and the Weil Group

(a) WE
F is open and of finite index in WF , it is normal in WF iff

E/F is Galois.

(b) The natural inclusion i : ΩE → ΩF induces a topological isomor-
phism WE →WF with image WE

F .

(c) The canonical map WE
F \WF → ΩE\ΩF and the corresponding

map for right cosets are a bijections. If E/F is Galois, these are
group isomorphisms.

(ii) The map E/F 7→ WE
F is an inclusion reversing bijection between the

set of finite subextensions of F̄ /F and finite index open subgroups of
WF .

Proof. Recall that ΩE embeds as an open subgroup of finite index in ΩF .
The first statement of (1a) follows immediately from injectivity and continu-
ity of iF . The normality statement of (1a) and (1c) follow from the density
of the image of iF .
For (1b), one has the commutative diagram:

ΩF Gal(kF̄ /kF ) Ẑ

ΩE Gal(kF̄ /kE) Ẑ

VF ∼

VE

i

∼

×f (2.7)

where f is the degree of the extension kE/kF and i is the natural inclusion.
Therefore, taking inverse images of 0 and Z from the top right corner of
the diagram along all the maps, we see that i restricts to a continuous
homomorphism iE(WE)→ iF (WF ) whose image is ΩE ∩ iF (WF ), such that
i−1(IF ) = IE .

The map in E/F 7→ WE
F is clearly inclusion reversing. Its injectivity fol-

lows from observing that iF (WE
F ) = ΩE . Now consider a finite index open

subgroup H of WF . Motivated by the equality iF (WE
F ) = ΩE , we consider

the closure of iF (H) in ΩF . Since the natural map H\WF → iF (H)\ΩF
has dense image, iF (H) has finite index in ΩF . Therefore iF (H) = ΩE for
some finite extension E/F . We want to show that H =WE

F , or equivalently,
iF (H) = V −1

F (Z) ∩ ΩE .
Consider the restriction of VF to H and ΩE . Let ΦH ∈ H be such that
VF (H) = VF (ΦH)Z. Since H has finite index in WF , VF (H) ̸= 0, in
particular, VF (ΦH) ̸= 0. Moreover, density of iF (H) in ΩE implies that
VF (ΩE) = VF (ΦH)Ẑ. Let HI = IF ∩ H, then H = ΦZ

H ⋉ HI . The map
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2.2. Local Class Field Theory and the Weil Group

VF (ΦH) 7→ ΦH gives a section for VF : ΩE → VF (ΦH)Ẑ. Let ΦẐ
H denote the

image of this section. This is the closure of ΦZ
H in ΩE . We have ΦẐ

H∩HI = 0,

since VF is injective on ΦẐ
H . By continuity, ΦẐ

H normalizes HI , so the com-

pact set ΦẐ
HHI is a subgroup, containing iF (H) as a dense subgroup. Then

ΩE = iF (H) = ΦẐ
H ⋉ HI . The equality iF (H) = ΦZ

HHI = V −1
F (Z) ∩ ΩE

immediately follows.

The choice of topology for the Weil group is motivated by getting a
cleaner restatement of the reciprocity law. First, a lemma;

Lemma 2.2.3. The commutators Wc
F and ΩcF have the same closure. In

particular induced map iabF :Wab
F → ΩabF is injective.

Proof. Observe that both Wc
F and ΩcF lie inside IF . Since IF has the same

topology as a subspace of both WF and ΩF , the density of the image of iF
implies that Wc

F is dense ΩcF . It follows that their closures coincide.

From properties (i) and (iii) of the reciprocity map θF , it is easy to see
that its image is exactly the subgroup Wab

F of ΩF . Property (iii) of the
reciprocity law then implies that we get topological isomorphism from F×

to Wab
F . Consider the composite map,

aF :WF Wab
F F× F×∼ a7→a−1

where the first map is abelianisation, second is the inverse of the isomor-
phism just obtained, and the last map is the multiplicative inversion.

Theorem 2.2.4 (Local Reciprocity). Let F be a non-Archimedean local
field. There is a continuous group homomorphism,

aF :WF → F×

satisfying the following properties:

(i) The map aF induces an isomorphism Wab
F
∼= F×.

(ii) The composition of aF with the valuation map vF : F× → Z is the
restriction of VF to ΩF .

(iii) aF (IF ) = UF , aF (PF ) = U1
F .
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2.3. Smooth representations of the Weil Group

(iv) Let E ⊂ F̄ be a finite extension of F . Then the following diagrams
commute:

WE E×

WF F×

aE

i NE/F

aF

(2.8)

Wab
F F×

Wab
E E×

θF

verE/F

θE

(2.9)

where i is the induced by the inclusion of ΩE into ΩF as in (1b) of
Proposition 2.2.2, and verE/F is the transfer homomorphism.

Moreover, these properties characterize aF .

All the statements follow without much work from the Galois group
version of the reciprocity law and the discussion above. We point out that
the composition with multiplicative inversion was only to avoid a sign
discrepancy in property (ii).
It is immediate from this formulation of the reciprocity law that the map
χ 7→ χ ◦ aF gives an isomorphism from group of characters of F× to WF .

We now discuss some generalities about smooth representations of WF .

2.3 Smooth representations of the Weil Group

As mentioned in the last section, unlike ΩF , the Weil group WF is not
compact, so it can have non-semisimple smooth representations. However,
irreducible representations of WF are almost the same as the ones for ΩF .

Lemma 2.3.1. Let (ρ, V ) be an irreducible smooth representation of WF .

(i) For any Frobenius element Φ ∈ WF , there exists a positive integer d
such that ρ(Φ)d is multiplication by a scalar.

(ii) V is finite dimensional.

Proof. Let v ∈ V, v ̸= 0. Then v is fixed by an open subgroup J of IF . There
exists a finite Galois extension E of F such that ΩE ∩IF ⊂ J . Replacing J
by ΩE ∩ IF we can assume that J is normal in WF . Since V is irreducible,
it is spanned by WF translates of v, hence J ⊂ ker ρ. In particular, ker ρ is
open.
Let Φ be a Frobenius element. Since ker ρ is open, ρ(IF ) is finite. The
conjugation action of ρ(Φ) on ρ(IF ) must then have finite order; in other
words ρ(Φ)d commutes with ρ(IF ) for some positive integer d. Since WF
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2.3. Smooth representations of the Weil Group

is generated by IF and Φ, this further implies that ρ(Φ)d commutes with
ρ(WF ), that is, ρ(Φ)

d ∈ EndWF
(V ). By Schur’s lemma, we get that ρ(Φ)d

is a scalar. It follows that V is spanned by {ρ(Φix)v | 0 ≤ i < d, x ∈
IF /(IF ∩ ker ρ)} and is in particular finite dimensional.

We record a weaker version of (i) applicable to all finite dimensional
smooth representations of WF .

Lemma 2.3.2. Let (ρ, V ) be a finite dimensional smooth representation of
WF . For any Frobenius element Φ, there exists a positive integer d such
that ρ(Φ)d is commutes with ρ(WF ).

Proof. Finite-dimensionality and compactness of IF imply that ρ(IF ) is
finite. Rest of the argument proceeds as in the proof of the previous lemma.

Given a smooth representation ρ of ΩF , we get a smooth representation
ρ ◦ iF of WF , which can be seen as the ”restriction” of ρ to WF .

Proposition 2.3.3. (i) Let ρ be a finite dimensional smooth representa-
tion of ΩF . Then ρ(ΩF ) is finite and is equal to ρ ◦ iF (WF ).

(ii) The map ρ 7→ ρ ◦ iF gives a fully faithful functor from the category
Repf (ΩF ) to Repf (WF ). That is,

HomΩF
(ρ1, ρ2) = HomWF

(ρ1 ◦ iF , ρ2 ◦ iF )

for (ρi, Vi) ∈ Repf (ΩF ). In particular ρi are isomorphic iff ρi ◦ iF are
isomorphic.

(iii) Let (ρ, V ) be a finite dimensional smooth representation of ΩF . Then
ρ is irreducible iff ρ ◦ iF is irreducible.

Proof. (i) Profiniteness of ΩF implies that ker ρ is open and ρ(ΩF ) is
finite. It then follows from the density of iF (WF ) in ΩF that the open
(and hence closed) subgroup iF (WF ) · ker ρ is all of ΩF . Therefore
ρ(ΩF ) = ρ ◦ iF (WF ).

(ii) Since any ΩF -map is also a WF -map, the map ρ 7→ ρ ◦ iF defines
a functor from Repf (ΩF ) to Repf (WF ). To show full-faithfulness, it
suffices to show that any WF -map f : V1 → V2 is also an ΩF -map.
Consider such WF -map f : V1 → V2. As in the proof of (i), we
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have ΩF = iF (WF ) · (ker ρ1 ∩ ker ρ2). Let x = iF (w)k ∈ ΩF , where
w ∈ WF , k ∈ ker ρ1 ∩ ker ρ2. Then,

f(ρ1(x)v) = f(ρ1 ◦ iF (w)v) = f(ρ) = ρ2 ◦ iF (w)f(v) = ρ2(x)f(v)

for any v ∈ V1. Therefore f is also ΩF -linear.

(iii) From (i) it follows that a subspace W of V is a ΩF -subspace iff it is a
WF -subspace. The statement of (iii) immediately follows.

Definition. We say a finite dimensional smooth representation τ of WF is
of Galois type, if τ = ρ ◦ iF for some (finite-dimensional) smooth repre-
sentation ρ of ΩF .

It follows from part (i) of the proposition that any finite dimensional
representation of WF of Galois type has finite image. The converse is also
true:

Theorem 2.3.4. Let (ρ, V ) be an finite dimensional smooth representation
of WF . The following are equivalent:

(i) ρ is of Galois type.

(ii) ρ has finite image.

(iii) ρ(Φ)d = Id for some positive integer d and a Frobenius element Φ.

Proof. The implication (i) =⇒ (ii) follows from the previous proposition,
(ii) =⇒ (iii) is immediate. We show (iii) =⇒ (ii) =⇒ (i).

Let ρ(Φ)d = Id for some positive integer d and a Frobenius element
Φ. Since V is finite dimensional, ρ(IF ) must be finite. Moreover, ρ(IF ) is
normal in ρ(WF ), which means ρ(WF ) = {ρ(Φix) | 0 ≤ i ≤ d, x ∈ IF } is
finite. Thus (iii) =⇒ (ii).

Lastly, if ρ(WF ) is finite, ker ρ is has finite index inWF . Since V is finite
dimensional, it is also an open subgroup. Therefore, ker ρ = WE

F for some
finite extension E/F . But iF inducesWF /WE

F
∼= ΩF /ΩE . By inverting and

composing we obtain an irreducible smooth representation τ of ΩF on V ,
which satisfies ρ = τ ◦ iF . So (ii) =⇒ (i).

In fact, irreducible smooth representations of WF are essentially the
same as those of ΩF . First, a definition:

Definition. We call a representation of WF or ΩF unramified, if it is
trivial on IF .
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Note that for characters, this is consistent with the notion of unramified
characters on F× (see here) via the property (iii) of the reciprocity map.
An example of such a character is the norm character,

∥x∥ := ∥aF (x)∥ = q−VF (x), x ∈ WF

where the ∥aF (x)∥ is the absolute value of aF (x) ∈ F×. The norm character
is clearly not of Galois type. Since any unramified character factors through
WF /IF ∼= Z, one gets the following:

Lemma 2.3.5. Any unramified character of WF is of the form ∥·∥s, for
s ∈ C.

Turns out that an arbitrary irreducible representation ofWF is of Galois
type, upto twisting by an unramified character:

Corollary 2.3.5.1. Let (ρ, V ) be an irreducible smooth representation of
WF . Then ρ = χ ⊗ τ for some unramified character χ and an irreducible
smooth representation τ of Galois type.

Proof. By lemma 2.3.1, ρ is finite dimensional and ρ(Φ)d = λ Id for some
positive integer d. Consider an unramified character such that χ(Φ)d = λ
(for example, χ = ∥·∥c where c satisfies q−cd = λ). Then τ := χ−1 ⊗ ρ
satisfies condition (iii) of the previous proposition.

Having understood irreducible representations of the Weil group, we
tackle the issue of semisimplicity:

Proposition 2.3.6. Let (ρ, V ) be a finite dimensional smooth representation
of WF , and Φ ∈ WF be a Frobenius element. The following are equivalent:

(i) ρ is a semisimple representation

(ii) ρ(Φ) ∈ AutC(V ) is semisimple

(iii) ρ(Ψ) ∈ AutC(V ) is semisimple for all Ψ ∈ WF .

Proof. (iii) =⇒ (ii) is clear, we show (ii) =⇒ (i) and (i) =⇒ (iii)
Let ρ(Φ) be semisimple. By lemma 2.3.2, ρ(Φ)d commutes with ρ(WF ) for
some positive integer d. Consider the finite index subgroup H = ⟨Φd, IF ⟩ ⊂
WF . Since ρ(Φd) is semisimple, the space V decomposes into a direct sum
of eigenspaces V = ⊕λVλ for ρ(Φd), and since ρ(Φd) commutes with ρ(H),
these eigenspaces are H-subrepresentations. Since ρ(Φd) acts as a scalar on
Vλ, a subspace of Vλ is an H-subspace iff it is a IF -subspace. It follows
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that Vλ is H-semisimple iff it is IF -semisimple, which it must be since IF is
profinite. Therefore each Vλ, and hence V is H-semisimple. It follows that
V is WF -semisimple since H has finite index in WF .
Now we assume that ρ is semisimple and pick Ψ ∈ WF . Then it decomposes
as a direct sum of irreducible representations ofWF . So we reduce to the case
where ρ is irreducible. But by the previous corollary, we know ρ = χ⊗ρ′, for
an irreducible smooth representation ρ′ of Galois type, and an unramified
character χ. Since ρ(Ψ) = χ(Ψ)ρ′(Ψ) is semisimple iff ρ′(Ψ) is semisimple,
we reduce to considering irreducible smooth representations ρ of Galois type.
But such representations have finite image, so ρ(Ψ)d = Id for some positive
integer d. Therefore ρ(Ψ) is semisimple.

Let E/F be a finite separable extension contained in our fixed algebraic
closure F̄ . Then we have functors ResE/F : ρ 7→ ρ |WE

and IndE/F : ρ 7→
IndWF

WE
ρ, where we identify WE with the finite index open subgroup WE

F

of WF (see Proposition 2.2.2). Then the lemmas 1.2.9, 1.2.16 and 1.2.17
immediately give the following:

Lemma 2.3.7. Let E/F be a finite separable extension contained in F̄ .

(i) A smooth representation ρ of WF is semisimple iff the representation
ResE/F ρ of WE is semisimple.

(ii) A smooth representation τ of WE is semisimple iff the representation
IndE/F τ of WF is semisimple.

2.4 A larger class of representations

In practice, most representations of ΩF and WF are ℓ-adic representations.
Particularly important instances of these are étale cohomology groups,
which includes of course, one of our objects of interest, the Tate module of
an elliptic curve. We start by defining ℓ-adic representations.

LetK be a topological field. Then for any finite dimensional vector space
V over K, a choice of basis gives a isomorphisms V ∼= Kd and AutK(V ) ∼=
GLd(K) ⊂ Md(K) ∼= Kd2 , where d = dimK V . This allows us to endow
both V and AutK(V ) with topologies. It is not too difficult to show that
these are independent of the choice of basis for V .

Definition. Let G be a topological group. By a continuous representa-
tion of G over K we mean a finite dimensional representation (π, V ) of G
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over K such that the action map aπ : G × V → V given by (g, v) 7→ π(g)v

for g ∈ G, v ∈ V is continuous. These form a category c-RepfK(G) with
G-linear maps as morphisms.
It can be shown that the continuity condition is equivalent to π : G →
AutK(V ) being continuous.

Using lemma 1.2.2, it is easy to see that the any finite dimensional
smooth representation over K is also a continuous representation over K,
in fact smooth representations are exactly continuous representations when
the topology on K is discrete.

For the rest of this section, we take K to be an algebraic extension of
Qℓ with the ℓ-adic topology given by the unique extension of the ℓ-adic
valuation on Qℓ to a Q-valued valuation on K.

Definition. Finite dimensional, continuous representations over algebraic
extensions of Qℓ with the ℓ-adic topology are called ℓ-adic representa-
tions.

As we will see later, IF can have infinite image under ℓ-adic repre-
sentations of WF , something which cannot happen within the realm of
smooth representations. However, we will see that we can still classify
ℓ-adic representations of the Weil group using their smooth representations,
if we allow ourselves to carry a bit more data with them. We only discuss
the case ℓ ̸= p, the residue characteristic of F .

We start with introducing some tools which will be useful to us. Let V
be a finite dimensional vector space over some field. For a nilpotent element
n ∈ End(V ) and the unipotent element u = 1 + n, set,

exp n = 1 +
∑
i≥1

ni

i!
, log u =

∑
j≥1

(−1)j−1n
j

j
.

Both sums have finitely many non-zero terms, and the expected identities
log(exp n) = u and exp(log u) = n hold. Moreover if g ∈ Aut(V ), then
g(exp n)g−1 = exp(gng−1), and if n, n′ ∈ End(V ) are commuting nilpotent
elements, n+ n′ is also nilpotent, and we have exp(n+ n′) = (exp n)(exp n′).

We also need the following lemma:

Lemma 2.4.1. There exists a continuous surjective homomorphism t :
IF → Zℓ, unique upto multiplication by an element of Z×

ℓ . Any such t
satisfies

t(gxg−1) = ∥g∥t(x), x ∈ IF , g ∈ WF . (2.10)

47



2.4. A larger class of representations

Proof. Recall that there is a topological isomorphism T : IF /PF →∏
q ̸=p Zq. This gives a continuous surjection, t = πℓ ◦T ◦ τ : IF → Zℓ, where

πℓ is the projection
∏
q ̸=p Zq → Zℓ and τ : IF → IF /PF is the quotient

map. The equation 2.10 follows from proposition 2.1.1.
Moreover, since PF is a pro p-group and ℓ ̸= p, any surjection t′ : IF →

Zℓ factors IF /PF . It further factors through πℓ ◦ T (all finite quotients of∏
q ̸=p,ℓ Zq have order prime to ℓ, that is, it has pro order prime to ℓ). There-

fore t′ differs from t by an automorphism of Zℓ, that is, by multiplication
by an element of Z×

ℓ . It follows that t
′ satisfies 2.10 since t does.

Now we can state the result which makes studying ℓ-adic representations
via smooth representations possible:

Theorem 2.4.2. Let (σ, V ) be an ℓ-adic representation of WF over K, with
ℓ ̸= p. Furthermore, let t : IF → Zℓ be a continuous surjective homomor-
phism. There is a unique nilpotent endomorphism nσ,t ∈ EndK(V ) such
that

σ(x) = exp(t(x)nσ,t), (2.11)

for all x in some open subgroup of IF .

See [BH06, Theorem 32.5] for a proof.

Corollary 2.4.2.1. Let (σ, V ), t : IF → Zℓ and nσ,t be as in the theorem.

(i) The endomorphism nσ,t satisfies:

σ(g)nσ,tσ(g)
−1 = ∥g∥nσ,t, g ∈ WF

In particular, for x ∈ IF , σ(x) commutes with nσ,t.

(ii) If t′ = αt : IF → Zℓ another continuous surjective homomorphism,
where α ∈ Z×

ℓ , then nσ,t′ =
1
αnσΦ,t.

Proof. We know that (2.11) holds for x in some open subgroup H of IF .
Since IF is a subspace of ΩF , we may assume H is normal in ΩF and hence
in WF . Then we have,

σ(x) = σ(g)σ(gxg−1)σ(g)−1

= σ(g) exp(t(gxg−1)nσ,t)σ(g)
−1

= σ(g) exp(∥g∥−1t(x)nσ,t)σ(g)
−1

= exp(t(x)∥g∥−1σ(g)nσ,tσ(g)
−1)
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for any x ∈ H, g ∈ WF , using (2.10). By uniqueness of nσ,t, (i) follows.
For (ii), note that (2.11) gives,

σ(x) = exp(t(x)nσΦ,t) = exp

(
t′(x)

1

α
nσΦ,t

)
for x in an open subgroup of IF . Therefore 1

αnσΦ,t satisfies the defining
property of nΦ,t′ .

We can now construct a smooth representation (σ, V, nσΦ,t) using the
following lemma,

Lemma 2.4.3. Let (σ, V ) be a finite dimensional (abstract) representation
of WF over K, and n ∈ EndK(V ) be a nilpotent element such that

σ(g)nσ(g)−1 = ∥g∥n, g ∈ WF (2.12)

Then, for a Frobenius element Φ ∈ WF and a continuous surjective homo-
morphism t : IF → Zℓ ,the map

σΦ,t,n(Φ
ax) = σ(Φax) exp(−t(x)n), a ∈ Z, x ∈ IF

is a homomorphism, that is σΦ,t,n is a representation ofWF on V . Moreover,
σΦ,t,n satisfies,

σΦ,t,n(g)nσΦ,t,n(g)
−1 = ∥g∥n, g ∈ WF . (2.13)

Proof. First, we note that the map σΦ,t,n is well defined since every element
of WF can be uniquely written as Φax for a ∈ Z, x ∈ IF . Now for g =
Φax, h = Φby ∈ WF ,

σΦ,t,n(gh) = σΦ,t,n(Φ
axΦby) = σΦ,t,n(Φ

a+bx′y) where x′ = Φ−bxΦb ∈ IF
= σ(Φa+bx′y) exp(−t(x′y)n)
= σ(Φax)σ(Φby) exp(−t(x′)n) exp(−t(y)n)
= σ(Φax) exp(−t(Φ−bxΦb)σ(h)nσ(h)−1)σ(Φby) exp(−t(y)n)
= σΦ,t,n(g)σΦ,t,n(h)

using (2.10), (2.12) and ∥h∥ = ∥Φb∥. Finally, (2.13) follows easily from
(2.12) and the observation that n commutes with exp(tn) for any t ∈ Qℓ and
a nilpotent element n.
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2.4. A larger class of representations

Corollary 2.4.3.1. Let (σ, V ), t : IF → Zℓ, and nσ,t be as in theorem 2.4.2.
Then the representation σΦ := σΦ,t,nσ,t as in the previous lemma is smooth
and independent of choice of t. Moreover it satisfies,

σΦ(g)nσ,tσΦ(g)
−1 = ∥g∥nσ,t, g ∈ WF (2.14)

Proof. By corollary 2.4.2.1(i), the previous lemma is applicable and hence
σΦ,t,nσ,t gives a representation of WF on V over K. But by definition of
nσ,t, this representation is trivial on an open subset of IF and hence WF ,
so it must be smooth. Moreover, the independence from the choice of t is
clear from corollary 2.4.2.1(ii), and (2.14) is exactly (2.13) from the previous
lemma.

Remark. One can recover the ℓ-adic representation (σ, V ) from the data
(σΦ, V, nσ,t); in the notation of lemma 2.4.3,

σ(Φax) = τΦ,t,−n(Φ
ax) = σΦ(Φ

ax) exp(t(x)nσ,t)

where τ = σΦ and n = nσ,t. So we enlarge the category of smooth represen-
tations of WF to account for the extra information carried by the nilpotent
element nσ,t.

Definition. A Weil-Deligne representation over K, is a triple (ρ, V, n),
where (ρ, V ) is a finite dimensional smooth representation of WF over K,
and n ∈ EndK(V ) is a nilpotent endomorphism satisfying:

ρ(x)nρ(x)−1 = ∥g∥n, x ∈ WF (2.15)

These representations form a category D-RepK(WF ), with morphisms f :
(ρ1, V1, n1) → (ρ2, V2, n2) given by a WF -linear map f : V1 → V2, which
satisfies f ◦ n1 = n2 ◦ f .

It is this larger category of representations ofWF , which forms the other
side of the Local Langlands Correspondence for GLn.

The corollary 2.4.3.1 then says exactly that the triple (σΦ, V, nσ,t) con-
structed using an ℓ-adic representation (σ, V ) is a Weil-Deligne representa-
tion over K. In fact, we can say more:

Theorem 2.4.4. Let Φ ∈ WF be a Frobenius element and t : IF → Zℓ be
a continuous surjective homomorphism. The map (σ, V ) 7→ (σΦ, V, nσ,t) is
functorial, and induces an equivalence of categories

DΦ,t : c-Rep
f
K(WF )→ D-RepK(WF )

Moreover,
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2.4. A larger class of representations

(i) If Φ′ is another Frobenius element, then the functors DΦ,t and DΦ′,t

are naturally isomorphic, that is, there is a family of isomorphisms,

AΦ,Φ′,σ,t : (σΦ, V, nσ,t)
∼−→ (σΦ′ , V, nσ,t)

for (σ, V ) ∈ c-RepfK(WF ), which is natural in (σ, V ).

(ii) Assume K is algebraically closed. If t′ : IF → Zℓ is another conti-
nous surjective homomorphism, then DΦ,t(σ, V ) and DΦ,t′(σ, V ) are
isomorphic.

Therefore, if K is algebraically closed, the functor DΦ,t induces a bijection
on isomorphism classes of n-dimensional ℓ-adic representations of WF over
K and n-dimensional Weil-Deligne representations over K, independent of
the choices of Φ and t.

Proof. Establishing Functoriality of DΦ,t:
We’ve already seen that (σΦ, V, nσ,t) is a Weil-Deligne representation. To
show functoriality, we prove that if f : (σ, V )→ (ρ,W ) is a WF -linear map
between ℓ-adic representations over K, then f is also morphism of Weil-
Deligne representations from (σΦ, V, nσ,t) to (ρΦ,W, nρ,t). For x in an open
subgroup H of IF , we have,

f ◦ exp(t(x)nσ,t) = f ◦ σ(x) = ρ(x) ◦ f = exp(t(x)nρ,t) ◦ f

By expanding the series for log, we get,

f ◦ (t(x)nσ,t) = f ◦ log(exp(t(x)nσ,t))
= log(exp(t(x)nρ,t)) ◦ f
= (t(x)nρ,t) ◦ f

The surjection t cannot be trivial on the open subgroup H since its image
Zℓ is not discrete. Therefore there exists x ∈ H such that t(x) ̸= 0, so by
the computation above we get,

f ◦ nσ,t = nρ,t ◦ f (2.16)

The fact that f ◦ σΦ(g) = ρΦ(g) ◦ f for all g ∈ WF then follows easily from
this and that f ◦ σ(g) = ρ(g) ◦ f for all g ∈ WF .

Constructing an inverse to DΦ,t:
To show that DΦ,t is an equivalence of categories, we show that
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2.4. A larger class of representations

CΦ,t : (ρ, V, n) 7→ (ρΦ,t,−n, V ) (see lemma 2.4.3) gives the inverse functor;

first we need to show (ρΦ,t,−n, V ) ∈ c-RepfK(WF ). We know that ρΦ,t,−n is a
homomorphism from lemma 2.4.3, and its continuity is an easy consequence
of continuity of ρ and of the map x 7→ exp(t(x)n).
Moreover, if g : (ρ1, V1, n1) → (ρ2, V2, n2) is a morphism of Weil-Deligne
representations, then it follows easily from definitions that g is also a
morphism from ((ρ1)Φ,t,−n1 , V1) to ((ρ2)Φ,t,−n2 , V2).

Lastly, if (σ, V ) ∈ c-RepfK(WF ), then the remark above says CΦ,t ◦
DΦ,t(σ, V ) = (σ, V ). Conversely if (ρ, V, n) ∈ D-RepK(WF ), then for x in
the open subgroup ker ρ ∩ IF ,

ρΦ,t,−n(x) = exp(t(x)n)

Therefore by the uniqueness part of theorem 2.4.2, nσ,t = n, where
σ = ρΦ,t,−n. It then easily follows that DΦ,t ◦CΦ,t(ρ, V, n) = (ρ, V, n). Lastly,
both the functors don’t do anything to morphisms. This finishes the proof
that DΦ,t is an equivalence of categories.

Proof of claim (i)
If Φ′ is another Frobenius element, then Φ′ = Φy for some y ∈ IF . Set

AΦ,Φ′,σ,t = exp

(
1

q − 1
t(y)nσ,t

)
∈ AutK(V )

For x ∈ IF , using corollary 2.4.2.1(i),

AΦ,Φ′,σ,t ◦ σΦ(x) = exp

(
1

q − 1
t(y)nσ,t

)
σ(x) exp(−t(x)nσ,t)

= σ(x) exp

(
1

q − 1
t(y)nσ,t

)
exp(−t(x)nσ,t)

= σ(x) exp(−t(x)nσ,t) exp
(

1

q − 1
t(y)nσ,t

)
= σΦ′(x) ◦AΦ,Φ′,σ,t
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2.4. A larger class of representations

Moreover, corollary 2.4.2.1(i) also gives,

AΦ,Φ′,σ,t ◦ σΦ(Φ) = exp

(
1

q − 1
t(y)nσ,t

)
σ(Φ)

= σ(Φ) exp

(
q

q − 1
t(y)nσ,t

)
= σ(Φ′y−1) exp(−t(y−1)nσ,t) exp

(
1

q − 1
t(y)nσ,t

)
= σΦ′(Φ) ◦AΦ,Φ′,σ,t

Finally, it is clear that AΦ,Φ′,σ,t commutes with nσ,t from expanding the
series for exp. Therefore AΦ,Φ′,σ,t is a morphism of Weil-Deligne represen-
tations. It is clear that AΦ′,Φ,σ,t = exp( 1

q−1 t(y
−1)nσ,t) its inverse. Moreover,

the naturality of AΦ,Φ′,σ,t in σ follows easily from (2.16).

Proof of claim (ii)
For (ii), we need to show that the Weil-Deligne representations (ρ, V, n) and
(ρ, V, αn) are isomorphic where t′ = αt, ρ = σΦ, n = 1

αnσ,t.
By lemma 2.3.2, ρ(Φ)d commutes with ρ(WF ) for some positive integer d.
Consider the “generalized eigenspaces” Vλ := ker(ρ(Φ)d−λ Id)dimV for λ ∈.
Centrality of ρ(Φ)d implies that each Vλ is ρ(WF )-subspace. Moreover, the
relation 2.15 implies that nVqdλ ⊂ Vλ. Since V = ⊕λVλ, pick we can define
B ∈ EndK(V ) by

Bv = µλv, v ∈ Vλ
where {µλ}λ ⊂ Z×

ℓ such that αµλqa = µλ. Then B commutes with ρ(WF )
on each Vλ since its a scalar, and hence on all of V , and for v ∈ Vλ,

Bnv = µq−dλnv = αµλnv = αnBv

Therefore, Bn = αnB, and hence B is an isomorphism from (ρ, V, n) and
(ρ, V, αn).

The bijection between isomorphism classes follows easily from (i),(ii) and
the observation that the equivalences DΦ,t preserve dimensions of represen-
tations.

We now fix K = Qℓ, and consider refinements of the equivalence above.
By the remark in chapter 1, it follows that there is an equivalence of cat-

egories from RepfQℓ
(WF ) to RepfC(WF ), and D-RepQℓ

(WF ) to D-RepC(WF ),

both dependent only on a choice of isomorphism Qℓ
∼= C. In particular we
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2.4. A larger class of representations

can transfer all the results from the previous section to finite dimensional
smooth representations of WF over Qℓ.
We now transfer the notion of semisimplicity of smooth representations from
Weil-Deligne representations to ℓ-adic representations via the equivalence
above.

Proposition 2.4.5. Let (σ, V ) be an ℓ-adic representation over Qℓ. The
following are equivalent:

(i) For a Frobenius element Φ ∈ WF , the smooth representation (σΦ, V )
is semisimple.

(ii) For a Frobenius element Φ ∈ WF , σ(Φ) is semisimple.

(iii) σ(g) is semisimple for all g ∈ WF − IF .

Proof. The equivalence of (i) and (ii) follows easily from the fact that
σΦ(Φ) = σ(Φ), and proposition 2.3.6. Moreover (iii) clearly implies (ii), so
it suffices to show (i) implies (iii)
Let the smooth representation (σΦ, V ) be semisimple, and n = nσ,t. If
g = Φax ∈ WF − IF , for some nonzero a ∈ Z and x ∈ IF , then,

exp

(
−1

qa − 1
t(x)n

)
σ(g) exp

(
1

qa − 1
t(x)n

)
= σ(g) exp

(
−qa

qa − 1
t(x)n

)
exp

(
1

qa − 1
t(x)n

)
= σ(g) exp(−t(x)n) = σΦ(g)

using ∥g∥ = q−a and corollary 2.4.2.1. But σΦ(g) is semisimple by proposi-
tion 2.3.6, hence so is σ(g).

We make a definition:

Definition. A Weil-Deligne representation (σ, V, n) or an ℓ-adic represen-
tation (σ, V ) of WF is said to be F -semisimple (or Frobenius semisimple),
if for any Frobenius element Φ ∈ WF , σ(Φ) is semisimple.

The previous proposition then gives the following:

Theorem 2.4.6. The equivalence of categories DΦ,t from theorem 2.4.4
restricts to an equivalence between the full subcategories of F -semisimple
representations ℓ-adic and Weil-Deligne representations over Qℓ. Moreover,
this equivalence induces a bijection between:

54



2.5. Structure of Weil-Deligne Representations

(i) isomorphism classes of n-dimensional, F -semisimple, ℓ-adic represen-
tations over Qℓ

(ii) isomorphism classes of n-dimensional, F -semisimple, Weil-Deligne
representations over Qℓ

independent of choices of Φ and t. These are further in bijection with iso-
morphism classes of n-dimensional, F -semisimple, Weil-Deligne representa-
tions over C, with this bijection dependent only on choice of an isomorphism
Qℓ
∼= C.

Remark. Note that proposition 2.3.6 says that F -semisimplicity for a Weil-
Deligne representation (σ, V, n) is equivalent to semisimplicity for the smooth
representation (σ, V ) but we choose to not call (σ, V, n) semisimple, since a
WF -subreprepresention of V might not be closed under n. In fact, instead
of separately keeping track of a nilpotent endomorphism, one can consider
Weil-Deligne representations as representations of a “Weil-Deligne group”,
where semisimplicity of (σ, V ) as a WF -representation will not equate to
semisimplicity of (σ, V, n) as a representation of the Weil-Deligne group. For
more details about the Weil-Deligne group, we refer the reader to [Roh94]
or Tate’s article (Number Theoretic Background) in [BC79].

2.5 Structure of Weil-Deligne Representations

We discuss the operations onWeil-Deligne representations, transferring stan-
dard constructions of representations from the category of ℓ-adic representa-
tions using the equivalence discussed in the previous section. From now, we
will go back to considering smooth and Weil-Deligne representations only
over C.

Fix a Frobenius element Φ ∈ WF , and a continuous surjective homom-
morphism t : IF → Zℓ.

Dual

Let (σ, V ) be an ℓ-adic representation. For m ∈ End(V ), denote its transpose
by m∗ ∈ End(V ∗), where V ∗ is the linear dual of V . Then we have a dual
ℓ-adic representation (σ∗, V ∗) given by σ∗(g) = σ(g−1)∗. Then one notes
that for x in an open subgroup of IF ,

σ∗(x) = σ(x−1)∗ = exp(t(x−1)nσ,t)
∗ = exp(t(x)(−n∗σ,t))
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2.5. Structure of Weil-Deligne Representations

Therefore, nσ∗,t = −n∗σ,t. Moreover, on checking separately for powers of Φ
and elements of IF , it follows quickly that ((σ∗)Φ, V

∗) is the smooth dual
of (σΦ, V ).
Hence we define the dual of a Weil-Deligne representation (ρ,W, n) to be:

(ρ,W, n)∨ = (ρ̌, W̌ ,−ň)

where (ρ̌, W̌ ) is the smooth dual of (ρ,W ), and ň = n∗ is the transpose
operator. Note that since kerσ is open, W̌ =W ∗.

Tensors and Sums

Now let (σ, V ) and (τ,W ) be ℓ-adic representations. Then we have the tensor
product ℓ-adic representation (σ⊗τ, V ⊗W ) given by σ⊗τ(g) = σ(g)⊗τ(g).
Then for x in an open subgroup of IF ,

(σ ⊗ τ)(x) = σ(x)⊗ τ(x)
= exp(t(x)nσ,t)⊗ exp(t(x)nτ,t)

=
∑
i,j≥0

(t(x))iniσ,t
i!

⊗
(t(x))njτ,t

j!

=
∑
i,j≥0

(
(t(x)(nσ,t ⊗ IdW ))i

i!

)(
(t(x)(IdV ⊗nτ,t))j

j!

)
= exp(t(x)(nσ,t ⊗ IdW )) exp(t(x)(IdV ⊗nτ,t))
= exp(t(x)(nσ,t ⊗ IdW +IdV ⊗nτ,t))

So we have nσ⊗τ,t = nσ,t ⊗ IdW +IdV ⊗nτ,t. One can similarly check that
((σ⊗τ)Φ, V ⊗W ) is the tensor product of (σΦ, V ) and (τΦ,W ). So naturally,
for Weil-Deligne representations (ρi, Ui, ni), i = 1, 2, we define their tensor
product to be,

(ρ1, U1, n1)⊗ (ρ2, U2, n2) = (ρ1 ⊗ ρ2, U1 ⊗ U2, n1 ⊗ IdU1 +IdU2 ⊗n2)

We define the direct sum of the (ρi, Ui, ni) by,

(ρ1, U1, n1)⊕ (ρ2, U2, n2) = (ρ1 ⊕ ρ2, U1 ⊕ U2, n1 ⊕ n2)

The verification that this definition corresponds to the usual direct sum of
ℓ-adic representations is similar (and in fact easier!) to that of duals and
tensors as above, so we omit it.
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Now that we have these standard constructions, we try to understand
what Weil-Deligne representations actually look like. We start with some
examples.

(i) If (ρ, V ) is any finite dimensional smooth representation of WF , then
(ρ, V, 0) is trivially a Weil-Deligne representation, which we will some-
times denote by just ρ. This is F -semisimple iff (ρ, V ) is semisimple
(Proposition 2.3.6).

(ii) We define a Weil-Deligne representation on Cn. For x ∈ WF , set

ρ(x)ei = ∥x∥i−
n−1
2 ei, i = 0, . . . , n−1, where {ei}n−1

i=0 is the standard ba-
sis of Cn. Further, let n ∈ Mn(C) given by nei = ei+1, i = 1, . . . , n−1,
nen = 0. Then one quickly verifies that (ρ,Cn, n) is an F -semisimple
Weil-Deligne representation. This is called the special representa-
tion of dimension n, and is denoted by sp(n).

(iii) Consider the tensor product ρ⊗sp(n) of the previous two examples, in
particular when (σ, V ) is semisimple. Tensor product of F -semisimple
representations is F -semisimple, since the product of eigenbases for a
Frobenius element will give an eigenbasis for the Frobenius element of
the tensor product representation, so ρ⊗ sp(n) is F -semisimple.

These essentially cover all the F -semisimple ones. Call a Weil-Deligne rep-
resentation indecomposable if it cannot be obtained as a direct sum of
non-trivial Weil-Deligne representations. Note that sp(n) is indecompos-
able; if Cn = U ⊕ V for WF -subspaces U and V closed under n, then
ker n = (ker n∩U)⊕ (ker n∩V ) which is not possible since ker n has dimen-
sion one and both ker n∩U and ker n∩V are non-trivial since n is nilpotent.
Generally, we have:

Theorem 2.5.1. Every indecomposable, F -semisimple Weil-Deligne repre-
sentation is of the form τ ⊗ sp(n) for an irreducible smooth representation
τ of WF and n ≥ 1.

Proof. This proof is borrowed from [Del73].
Let (ρ, V, n) be an indecomposable F -semisimple Weil-Deligne representa-
tion. Consider the decomposition of V into isotypic components for smooth
irreducible WF representations,

V =
⊕
τ

V τ

where the sum ranges over isomorphism classes of irreducible WF represen-
tations. The condition 2.15 says exactly that n isWF -map from the smooth
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representation (ρ ⊗ ∥·∥, V ) to (ρ, V ). Since the (τ ⊗ ∥·∥)-isotypic compo-
nent in (ρ ⊗ ∥·∥, V ) is V τ , nV τ ⊂ V τ⊗∥·∥. It follows that, ⊕i∈ZV τ⊗∥·∥i is
closed under both n and WF . If we group together isotypic components
which differ by tensoring with an integer power of ∥·∥, we get a direct sum
decomposition of (ρ, V, n), so from indecomposability it follows that,

V =
⊕
i∈Z

V τ⊗∥·∥i

Since V is finite dimensional, only finitely many of these isotypic components
are non-trivial. We can replace τ by τ ⊗ ∥·∥i for a suitable i such that
V τ⊗∥·∥i = (0) for i < 0 and V τ ̸= (0). So finally we have something of the
form,

V =
n−1⊕
i=0

V τ⊗∥·∥i

Where n−1 is the largest i such that V τ⊗∥·∥i ̸= (0). Let (τ,W ) be a smooth
irreducible representation of WF of type τ , and set,

Si = HomWF
(τ ⊗ ∥·∥i, V ) = HomWF

(τ ⊗ ∥·∥i, V τ⊗∥·∥i)

S = ⊕n−1
i=0 Si = HomWF

(
n−1⊕
i=0

(τ ⊗ ∥·∥i), V

)

Here we are using τ to denote the representation (τ,W ) and not just its
isomorphism class. Note that composition by n is a nilpotent endomorphism
of S. It maps Si to Si+1; if f ∈ Si = HomWF

(τ ⊗ ∥·∥i, V τ⊗∥·∥i), it follows

from our initial discussion that the image of n ◦ f lies in V τ⊗∥·∥i+1
, it only

remains to show that this is gives a WF -map. But that follows from,

n ◦ f(τ(g)∥g∥i+1w) = n(σ(g)f(∥g∥w)) = σ(g)n ◦ f(w)

We construct a Weil-Deligne representation (ρ′, S, n′) as follows:

ρ′(g)(f) = ∥g∥if, f ∈ Si
n′f = n ◦ f, f ∈ S

We then have the following isomorphism of Weil-Deligne representations:

F : (τ,W, 0)⊗ (ρ′, S, n′)→ (ρ, V, n)

w ⊗ fi 7→ fi(w), w ∈W, fi ∈ Si
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2.6. L-functions and local constants

First, to check that this is an isomorphism of smooth WF representations,
note that the map above is the direct sum of maps:

(τ,W )⊗ (∥·∥i, Si)→ (ρ, V τ⊗∥·∥i)

w ⊗ fi 7→ fi(w), w ∈W, fi ∈ Si

for 0 ≤ i < n. These can easily be seen to be WF -isomorphisms by consid-
ering a decomposition of V τ⊗∥·∥i into a direct sum of copies of τ ⊗∥·∥i, and
the induced decomposition of Si = HomWF

(τ ⊗ ∥·∥i, V τ⊗∥·∥i) into a direct
sum of copies of EndWF

(τ ⊗ ∥·∥i) = C, and noting that

(τ,W )⊗ (∥·∥i,C)→ (τ ⊗ ∥·∥i,W )

w ⊗ c 7→ cw, w ∈W, c ∈ C

is aWF -isomorphism. Finally, F ◦(IdW ⊗n′) = n◦F follows from definitions
of F and n′.

We now show that (ρ′, S, n′) is isomorphic to ∥·∥
n−1
2 ⊗ sp(n), with which

it will follow that (ρ, V, n) ∼= (∥·∥
n−1
2 ⊗ τ) ⊗ sp(n) which is of the required

form. The indecomposability of (ρ, V, n) implies the same for (ρ′, S, n′).
Pick a non-zero v0 ∈ S0, and let 1 ≤ k ≤ n be the smallest integer such that
(n′)kv0 = 0. Set vi = (n′)iv0 ∈ Si for 1 ≤ i < k. Pick a linear functional
t : Sk−1 → C, such that t(cvi) = c. Define Ti := ker t ◦ (n′)k−i−1 : Si → C
for 0 ≤ i < k, and Ti = Si for k ≤ i < n. Then n′Ti ⊂ Ti+1, and for
0 ≤ i < k, Si = Cvi ⊕ Ti. But this gives a decomposition of (ρ′, S′, n′); the
complementary subspaces ⊕k−1

i=0Cvi and ⊕
n−1
i=0 Ti are both closed under n′ and

the action of WF . Indecomposability lets us conclude that S = ⊕k−1
i=0Cvi, in

particular k = n. Then ei 7→ vi gives an isomorphism from ∥·∥
n−1
2 ⊗ sp(n)

to (ρ′, S, n′).

2.6 L-functions and local constants

We associate L-functions and local constants to F -semisimple Weil-Deligne
representations, starting with doing the same for finite dimensional semisim-
ple smooth representations of WF .

Definition. The L-function of a finite dimensional semisimple smooth
representation (ρ, V ) of WF is the function given by

L(ρ, s) = det(1− ρI(Φ)q−s)−1
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where ρI is the subrepresentation of ρ on V IF and Φ is a Frobenius element
of WF . Note that ρI factors through WF /IF , so the above definition does
not depend on the choice of Φ.

Proposition 2.6.1. The L-function defined above is characterized by the
following properties:

(i) For a character χ of WF ,

L(χ, s) = L(χ ◦ a−1
F , s)

where the L-function on the right is the one attached by Tate to the
character χ ◦ a−1

F of F× (see last section of the first chapter).

(ii) For an irreducible smooth representation (ρ, V ) of dimension atleast 2,

L(ρ, s) = 1

(iii) For finite dimensional semisimple smooth representations (ρi, Vi), i =
1, 2 of WF ,

L(ρ1 ⊕ ρ2, s) = L(ρ1, s)L(ρ2, s)

Proof. The first and third properties follows easily from the definitions.
For property 2, note that irreducbility of ρ implies that V I

F = 0 or V .
In the first case, L(ρ, s) = 1 immediately follows. If V I

F = V , then the
representation ρ factors throughWF /IF = Z which is abelian. Irreduciblity
of ρ then implies that it must be 1 dimensional, contradicting the hypothesis.

These properties determine the L-function for all finite dimensional
semisimple smooth representations since any such representations is a direct
sum of irreducibles, so by (iii), it suffices to fix L-functions for irreducible
smooth representations. But those are given by the properties (i) and
(ii) above, for one dimensional and higher dimensional representations
respectively.

Defining the local constant is much more difficult, and we shall omit
proofs of its existence and its properties. One can refer to section 30 of
[BH06] for details.

Denote by Gss(E) the set of isomorphism classes of finite dimensional
semisimple smooth representations of WE , where E/F is a finite separable
extension. As for smooth representations of GL2(F ), we fix a non-trivial
character ψ ∈ F̂ . Moreover, we set ψE = ψ ◦ trE/F ∈ Ê, where trE/F is the
field trace.
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2.6. L-functions and local constants

Theorem 2.6.2. For E/F ranging over finite extensions in F̄ , there is a
unique family of functions,

Gss(E)→ C[qs, q−s]×

ρ 7→ ε(ρ, s, ψE)

satisfying the following properties:

(i) If χ is a character of WE, then

ε(χ, s, ψE) = ε(χ ◦ a−1
E , s, ψE)

Again, here the function on the right is the local constant attached to
the character χ ◦ a−1

E of E×.

(ii) If ρ1, ρ2 ∈ Gss(E), then

ε(ρ1 ⊕ ρ2, s, ψE) = ε(ρ1, s, ψE)ε(ρ2, s, ψE)

(iii) If ρ ∈ Gss(E) is n-dimensional, and E/K is a finite extension con-
tained in F̄ , then

ε(IndE/K ρ, s, ψK)

ε(ρ, s, ψE)
=
ε(IndE/K 1E , s, ψK)n

ε(1E , s, ψE)n

where 1E denotes the trivial representation of WE.

Definition. The function ε(ρ, s, ψ) attached to a semisimple smooth
representation (ρ, V ) of WF given by the previous theorem is called the
Langlands-Deligne local constant of ρ, relative to the character ψ ∈ F̂
and the complex variable s.

We list some of its properties:

Proposition 2.6.3. Let ψ ∈ F̂ , ψ ̸= 1 as above, and ρ ∈ Gss(F ).

(i) There is an integer n(ρ, ψ) such that

ε(ρ, s, ψ) = qn(ρ,ψ)(
1
2−s)ε(ρ, 12 , ψ)

(ii) Let a ∈ F×. Then:

ε(ρ, s, aψ) = det ρ(a)∥a∥dim(ρ)(s−1
2 )ε(ρ, s, ψ)

n(ρ, aψ) = n(ρ, ψ) + vF (a) dim ρ

In particular, n(ρ, ψ) depends only on ρ and the level of ψ.
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2.6. L-functions and local constants

(iii) The local constants satisfy the functional equation

ε(ρ, s, ψ)ε(ρ̌, 1− s, ψ) = det ρ(−1)

We now extend these definitions to the F -semisimple Weil-Deligne rep-
resentation (ρ, V, n). Let (ρn, Vn) denote the subrepresentation ofWF on the
subspace Vn = ker n. Set

L((ρ, V, n), s) = L(ρn, s)

For the local constant, consider the dual representation (ρ̌, V̌ ,−ň) and set,

ε((ρ, V, n), s, ψ) = ε(ρ, s, ψ)
L(ρ̌, 1− s)
L(ρ, s)

L(ρn, s)

L(ρ̌(−ň), 1− s)

Note that if n = 0, then the L-function and the local constants are simply the
ones attached to the representation (ρ, V ), that is L((ρ, V, n), s) = L(ρ, s)
and ε((ρ, V, n), s, ψ) = ε(ρ, s, ψ). Moreover, these definitions are still multi-
plicative, that is, for Weil-Deligne representations (ρi, Vi, ni), i = 1, 2,

L((ρ1, V1, n1)⊕ (ρ2, V2, n2), s) = L((ρ1, V1, n1), s)L((ρ2, V2, n2), s)

ε((ρ1, V1, n1)⊕ (ρ2, V2, n2), s, ψ) = ε((ρ1, V1, n1), s, ψ)ε((ρ2, V2, n2), s, ψ)

Example. We close the chapter with a computation of the L-function and
the local constant for the Weil-Deligne representation χ⊗ sp(2) = (ρ,C2, n),
where χ is a character ofWF .The smooth representation (ρ,C2) decomposes

as χ∥·∥−
1
2 ⊕ χ∥·∥

1
2 . Moreover, if {ě0, ě1} is the basis of (C2)∨ dual to the

standard basis of C2, then we have an isomorphism,

χ−1 ⊗ sp(2)→ (χ⊗ sp(2))∨ = (ρ̌, (C2)∨,−ň)
ei 7→ (−1)iě1−i

It follows that ρ̌ ∼= χ−1∥·∥−
1
2 ⊕ χ−1∥·∥

1
2 , ρn ∼= χ∥·∥

1
2 and ρ̌−ň

∼= χ−1∥·∥
1
2 .

Then we have,

L(χ⊗ sp(2), s) = L(ρn, s) = L(χ∥·∥
1
2 , s) = L(χ, s+ 1

2)

L(ρ̌−ň, s) = L(χ−1∥·∥
1
2 , s) = L(χ−1, s+ 1

2)

L(ρ, s) = L(χ, s− 1
2)L(χ, s+

1
2)

L(ρ̌, s) = L(χ−1, s− 1
2)L(χ

−1, s+ 1
2)
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For local constants, fixing a ψ of level one and using proposition 2.6.2 we
get:

ε(ρ, s, ψ) = ε(χ∥·∥−
1
2 , s, ψ)ε(χ∥·∥

1
2 , s, ψ)

So we obtain,

ε(χ⊗ sp(2), s, ψ) = ε(ρ, s, ψ)
L(χ−1, 12 − s)L(χ

−1, 32 − s)L(χ, s+
1
2)

L(χ, s− 1
2)L(χ, s+

1
2)L(χ

−1, 32 − s)

Now if χ is unramified, using proposition 1.3.17, we get:

ε(ρ, s, ψ) = q2(s−
1
2 )χ(Φ)−2

where Φ is a Frobenius element. and

ε(χ⊗ sp(2), s, ψ) = q2(s−
1
2 )χ(Φ)−2 1− χ(Φ)q

1
2
−s

1− χ(Φ)−1qs−
1
2

= −qs−
1
2χ(Φ)−1 = −ε(χ, s, ψ)

But if χ is ramified, all the L-functions above become trivial, so we have

L(χ⊗ sp(2), s) = 1

ε(χ⊗ sp(2), s, ψ) = ε(χ∥·∥−
1
2 , s, ψ)ε(χ∥·∥

1
2 , s, ψ)
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Chapter 3

The Local Langlands
Correspondence and Elliptic
Curves

This chapter is divided into two parts. First, we state the Local Langlands
Correspondence for GL2. Then we discuss Elliptic Curves over Local Fields,
in particular their Tate modules and reductions. Finally, we look at the
smooth representations corresponding to the Tate module, using the tools
we developed in chapter 2.

3.1 The Local Langlands Correspondence for GL2

Now that we’ve defined and discussed both the sides of the Langlands corre-
spondence, we can finally state it. Let G2(F ) denote the set of isomorphism
classes of 2-dimensional, F -semisimple, complex Weil-Deligne Representa-
tions, and A2(F ) denote the set of isomorphism classes of irreducible smooth
complex representations of GL2(F ). Throughout this section, we will iden-
tify characters of WF with characters of F× via the reciprocity map aF .

Theorem 3.1.1 (Langlands Correspondence). Let ψ ∈ F̂ , ψ ̸= 1. There is
a unique map,

π : G2(F )→ A2(F )

which satisfies
L(χ · π(ρ), s) = L(χ⊗ ρ, s),

ε(χ · π(ρ), s, ψ) = ε(χ⊗ ρ, s, ψ),
(3.1)

for all ρ ∈ G2(F ) and all characters χ of F×.
The map π is a bijection, and the equalities (3.1) hold for all ψ ∈ F̂ , ψ ̸= 1.

The uniqueness of such a map follows immediately from the Converse
Theorem. We draw some conclusions about π from its defining properties.
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3.1. The Local Langlands Correspondence for GL2

Let A2(F ) = A0
2(F )∪A2

2(F ), where A
0
2(F ) and A1

2(F ) denote the classes
of irreducible principal series and cuspidal representations of GL2(F ) respec-
tively. Then A0

2(F ) and A1
2(F ) are closed under twisting by a character of

F×, moreover, for all π ∈ A0
2(F ), L(π, s) = 1. Meanwhile for π ∈ A1

2(F ), by
proposition (i) there exists a character χ such that L(χπ, s) is not constant.
We have shown:

Proposition 3.1.2. Let π ∈ A2(F ). Then π ∈ A0
2(F ) iff L(χ · π, s) = 1 for

all characters χ of F×.

We now consider G2(F ) = G0
2(F ) ∪ G1

2(F ), where G0
2(F ) and G1

2(F ) de-
note classes of 2-dimensional, F -semisimple, Weil-Deligne representations
(ρ, V, n) where the smooth representation (ρ, V ) is irreducible and reducible
respectively. These classes are closed under tensoring by a character ofWF .
Moreover, for all (ρ, V, n) ∈ G0

2(F ), n = 0 since ker n is a WF -subspace of V .
In particular, L((ρ, V, n), s) = L(ρ, s) = 1 by proposition 2.6.1.

For (ρ, V, n) ∈ G1
2(F ), by theorem 2.5.1, (ρ, V, n) ∼= (χ1,C, 0)⊕ (χ2,C, 0)

or (ρ, V, n) ∼= (χ1,C, 0)⊗ sp(2), for characters χ1, χ2 of WF . In either case,
χ−1
1 ⊗ ρ has a non-trivial L-function. Again we have,

Proposition 3.1.3. Let ρ ∈ G2(F ). Then ρ ∈ G0
2(F ) iff L(χ⊗ π, s) = 1 for

all characters χ of WF .

We immediately obtain:

Proposition 3.1.4. Let π be as in theorem 3.1.1. The π(G0
2(F )) = A0

2(F )
and π(G1

2(F )) = A1
2(F ).

We will only explicitly give the correspondence between G1
2(F ) and

A1
2(F ). The remaining much harder part of the correspondence is essentially

the subject of most of the book [BH06].

Theorem 3.1.5. There is a unique map

π1 : G1
2(F )→ A1

2(F )

such that
L(χ · π1(ρ), s) = L(χ⊗ ρ, s)

for all ρ ∈ G1
2(F ) and characters χ of F×. The map π1 is bijective, and it

satisfies

π1(χ⊗ ρ) = χ · π1(ρ),

ε(χ · π1(ρ), s, ψ) = ε(χ⊗ ρ, s, ψ),

for all ρ ∈ G1
2(F ), characters χ of F× and ψ ∈ F̂ , ψ ̸= 1.
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3.2. The Tate module of an Elliptic Curve

Proof. The uniqueness of such a map follows from the Converse theorem
for the Principal series. As before, by theorem 2.5.1, any Weil-Deligne rep-
resentation is of the form (ρ, V, n) ∼= (χ1,C, 0) ⊕ (χ2,C, 0) or (ρ, V, n) ∼=
(χ1,C, 0) ⊗ sp(2), for characters χ1, χ2 of WF . We define the map by con-
sidering cases:

(i) (ρ, V, n) ∼= (χ1,C, 0) ⊕ (χ2,C, 0), χ1χ
−1
2 ̸= ∥·∥±1. Then set π1(ρ) =

ιGB(χ1 ⊗ χ2).

(ii) (ρ, V, n) ∼= (χ1,C, 0) ⊕ (χ2,C, 0), χ1χ
−1
2 = ∥·∥±1. Then we have

{χ1, χ2} = {χ∥·∥
1
2 , χ∥·∥−

1
2 }. Set π1(ρ) = χ ◦ det.

(iii) (ρ, V, n) ∼= χ⊗ sp(2). Then set π1(ρ) = χStG.

The three cases are closed under tensoring by characters, and infact this
map satisfies π1(χ ⊗ ρ) = χπ1(ρ) for all ρ and χ. It can be easily checked
that this map satisfies the other required properties using theorem 1.3.19
and the computation at the end of chapter 2.

3.2 The Tate module of an Elliptic Curve

We follow the exposition in [Sil09]. Let E be an elliptic curve over an
arbitrary field K. Recall that an elliptic curve over K is a smooth curve
over K of genus 1 with a chosen K-rational point O ∈ E(K). Given such
a curve one can make it into a commutative algebraic group with O as its
identity. In particular, for an algebraic closure K̄ of K, E(K̄) is an abelian
group with identity O, and for any subextension L ⊂ K̄ of K, E(L) is a
subgroup.

The structure of the torsion in E(K̄) is as follows:

Proposition 3.2.1. Let E be an elliptic curve over K.

(i) If m ≥ 1 is an integer such that char(K) ∤ m, then

E(K̄)[m] ∼=
Z
mZ
× Z
mZ

.

(ii) If char(K) = p ̸= 0, then either,

E(K̄)[pe] ∼=
Z
peZ

∀e ≥ 1 or E(K̄)[pe] = {O} ∀e ≥ 1.
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3.2. The Tate module of an Elliptic Curve

Here E(K̄)[m] denotes the m-torsion of the abelian group E(K̄).

Proof. See [Sil09, Corollary III.6.4]

Now assume that K is perfect, so K̄ is Galois over K. Then we have a
continuous action of ΩK = Gal(K̄/K) on the points E(K̄) with the discrete
topology. This action can be as the elements of ΩK acting coordinate-wise
on K̄-points of E after embedding E into a projective space using equations
over K. This action is linear, since the group multiplication is defined over
K, in particular, for any m ∈ Z, the torsion subgroups E(K̄)[m] is closed
under the the action of ΩK .

Now let ℓ be a prime number. From the proposition 3.2.1 above, we have
commutative diagrams,

E(K̄)[ℓn+1] E(K̄)[ℓn]

( Z
ℓn+1Z)

r ( Z
ℓnZ)

r

∼

[ℓ]

∼ (3.2)

for all n ≥ 1, for suitable choice of vertical isomorphisms. Here [ℓ] is the
multiplication by ℓ map on the points of E, the bottom map is the nat-
ural quotient map, and r = 0, 1 or 2, depending on which of the cases of
proposition 3.2.1 we are in.

Definition. The ℓ-adic Tate module of an elliptic curve E over K, is the
(topological) Zℓ-module defined by the inverse limit,

Tℓ(E) = lim←−
n

E(K̄)[ℓn]

with respect to the multipication by ℓ maps in the top row of (3.2). The
rational ℓ-adic Tate module Vℓ(E) is the Qℓ-vector space given by Q ⊗
Tℓ(E).

Note that the multipication by ℓ maps are ΩK-equivariant. Since the ac-
tion of ΩK on E(K̄)[ℓn] is continuous and Z/ℓnZ-linear, we have a continuous
Zℓ-linear action of ΩK on Tℓ(E), and hence a continuous Qℓ-linear action
on Vℓ(E), i.e. Vℓ(E) is an ℓ-adic representation of ΩK . As a Zℓ-module, the
structure of Tℓ(E) can be derived from proposition 3.2.1:

Proposition 3.2.2. Let p = char(K) and E be an elliptic curve over K.
Then,
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3.2. The Tate module of an Elliptic Curve

(i) Tℓ(E) ∼= Zℓ × Zℓ if ℓ ̸= p.

(ii) Tp(E) ∼= {0} or Zp if p ̸= 0

Proof. This follows immediately by taking inverse limit of the diagram (3.2)
and noting that proposition 3.2.1 says that r = 2 if ℓ ̸= p, and if ℓ = p ̸= 0,
then r = 0 or 1.

The Tate module when ℓ ̸= char(K) carries a lot of information about
the elliptic curve. Let ϕ : E1 → E2 be an isogeny of elliptic curves over K,
that is, a K̄-morphism which maps the identity of E1 to that of E2. Such
a map is automatically a group homomorphism on the points (see [Sil09,
Theorem III.4.8]), in particular it induces a Zℓ-linear map ϕℓ between the
Tate modules, that is, we have a group homomorphism,

Hom(E1, E2)→ HomZℓ
(Tℓ(E1), Tℓ(E2)), ϕ 7→ ϕℓ (3.3)

where Hom(E1, E2) is the set of isogenies made into an abelian group by the
group multiplication on E2. Then we have the following result,

Theorem 3.2.3. Let E1,E2 be elliptic curves over K and ℓ ̸= char(K) be
a prime. Then the natural map

Hom(E1, E2)⊗ Zℓ → HomZℓ
(Tℓ(E1), Tℓ(E2))

is injective.

Proof. We’ll need and prove only that (3.3) is injective. Injectivity of the
map induced on the tensor product with Zℓ is much harder, for a proof, see
[Sil09, Theorem III.7.4].
Let ϕ : E1 → E2 be an isogeny such that ϕℓ = 0. But that means ϕ maps
E1(K̄)[ℓn] to the identity O2 of E2 for all n ≥ 1, so the inverse image of O2

under ϕ is infinite. But the inverse image of O2 is a closed subset of E1.
Since E1 is irreducible of dimension one, any proper closed subset must be
finite. Therefore ϕ maps all of E1 to O2, i.e. ϕ = 0.

Now for an elliptic curve E, let ϕ ∈ End(E) = Hom(E,E). The Tate
module Tℓ(E) is a free Zℓ-module, so one can compute the determinant and
trace of the induced Zℓ-endomorphism of Tℓ(E). Then we have,

Proposition 3.2.4. Let E be an elliptic curve, ϕ ∈ End(E) and ℓ ̸=
char(K) be a prime. If ϕℓ is the induced endomorphism of Tℓ(E), then
we have,

det(ϕℓ) = deg(ϕ), tr(ϕℓ) = 1 + deg(ϕ)− deg(1− ϕ),
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3.3. Elliptic Curves over Local Fields

where deg(ϕ) is the degree of the map ϕ, that is the degree of the function
field extension K̄(E)/ϕ∗(K̄(E)). In particular, the det(ϕℓ) and tr(ϕℓ) lie in
Z and do not depend on ℓ.

Proof. See [Sil09, Proposition III.8.6]

Corollary 3.2.4.1. Let E, ϕ and ℓ be as above. Then ϕℓ acts semisimply
on Vℓ(E) = Q ⊗ Tℓ(E). That is, there exists an eigenbasis of Vℓ(E) for ϕℓ
after extending scalars to an algebraic closure Qℓ of Qℓ.

Proof. If the characteristic polynomial of ϕℓ ∈ EndQℓ
(Vℓ(E)) has distinct

roots, we are done. Suppose not, then the characteristic polynomial must
be (X − 1

2 tr(ϕℓ))
2. But then theorem 3.2.3 along with Cayley-Hamilton

implies that (2ϕ− [tr(ϕℓ)])
2 ∈ End(E) is the zero map, where [tr(ϕℓ)] is the

multiplication by tr(ϕℓ) map on E (this makes sense since by the previous
proposition, tr(ϕℓ)) ∈ Z).

But the ring End(E) has no non-zero nilpotent elements, for if ψ ∈
End(E) is a non-zero endomorphism, then the closure of its image is a
connected closed subset of E larger than a single point, so it must be all of
E. It follows that ψn has dense image for any n ≥ 1 so it cannot be the zero
map. So we must have 2ϕ− [tr(ϕℓ)] = 0. This implies ϕℓ =

tr(ϕℓ)
2 Id, which

is semisimple.

We will need this corollary later to show that the ℓ-adic representation
on the Tate module of an elliptic curve over a local field is F -semisimple.

3.3 Elliptic Curves over Local Fields

Let E be an elliptic curve over a (non-Archimedean) local field F of char-
acteristic zero. We wish to make sense of a reduction of E modulo the
maximal ideal p of the valuation ring oF , and to this end we will need some
generalities on Weierstrass equations.

3.3.1 Weierstrass Equations

We temporarily work over an arbitrary field K. A Weierstrass equation over
K is a cubic equation of the form

W =W(x, y) : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6 (3.4)

where the coefficients ai lie in K. Homogenizing any such equation by
substitutions x = X

Z and y = Y
Z defines a curve EW in P2

K . Note that the
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3.3. Elliptic Curves over Local Fields

only point of this curve lying at infinity (that is, on the line Z = 0) is
[0 : 1 : 0], and that this point is nonsingular. Moreover, one can define
a group structure on the nonsingular locus EnsW of EW by the usual geo-
metric group law on an elliptic curve (see [Sil94, III.2.3, Proposition III.2.5]).

Attached to a Weierstrass equation, [Sil09, III.1] defines many quantities,
given by integer polynomials in the coefficients ai. We’ll need the discrim-
inant ∆ and the invariant denoted by c4 in [Sil09]. We omit their explicit
definitions due to their cumbersome nature. The curve EW can look like
the following based on the value of ∆ and c4:

(i) ∆ ̸= 0: This happens iff the curve EW is nonsingular, in particular
EW together with the rational point [0 : 1 : 0] ∈ EW(K) forms an
elliptic curve.

(ii) ∆ = 0: In this case, EW has a unique singular point S ̸= [0 : 1 : 0].

(a) if c4 ̸= 0, EW has two distinct tangent lines at S, and we call S a
node. The slopes of the tangent lines lie in an atmost quadratic
extension of K. If they lie in K, EnsW

∼= Gm,K = A1
K − {0},

the multiplicative group over K. That is, there are group iso-
morphisms EnsW (L) ∼= L× for all extensions L/K, functorial in
L.

(b) if c4 = 0, EW has a unique tangent line at S, and we call S a
cusp. In this case, EnsW

∼= Ga,K = A1
K , the additive group over

K. That is, there are group isomorphisms EnsW (L) ∼= L+ for all
extensions L/K, functorial in L.

For proofs see [Sil09, Propositions III.1.4a, III.3.1c, III.2.5]. Note that the
maps given in Proposition III.2.5 are isomorphisms of varieties EnsW

∼= Gm,K

and EnsW
∼= Ga,K mentioned in the case (ii) above and not just isomorphisms

between their points as indicated in the proposition.

Multiple Weierstrass equations can give rise to isomorphic curves. In the
case (i) above, we can characterize when can this happen:

Proposition 3.3.1. Suppose two Weierstrass equations W(x, y) and
W ′(x′, y′) over K give isomorphic curves, such that the isomorphism maps
the point at infinity to itself. Then the equations are related by a linear
change of variables of the form

x = u2x′ + r, y = u3y′ + u2sx′ + t
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3.3. Elliptic Curves over Local Fields

where u ∈ K× and r, s, t ∈ K. Moreover if ∆, c4 and ∆′, c′4 are the dis-
criminant and the quantity “c4” of W and W ′ respectively, then we have
u12∆′ = ∆ and u4c′4 = c4.

Proof. See [Sil09, Proposition III.3.1b] for the proof of the first claim. The
change of variable formulae for ∆ and c4 follow from computation (see [Sil09,
III.1 Table 3.1] for change of variable formulae for coefficients and quantities
attached to Weierstrass equations).

3.3.2 Reduction of Elliptic Curves

Now suppose we have an elliptic curve E over a local field F and W is a
Weierstrass equation for E, that is E ∼= EW . Moreover, one can pick W to
have coefficients in oF by using a change of variables as in proposition 3.3.1
with vF (u) sufficiently large and negative.

Definition. A Weierstrass equation W over a local field F is said to be
integral, if all its coefficients lie in oF .

Naively, one could take an integral Weierstrass equation W for E then
reduce it to get a Weierstrass equation W̃ over the residue field k. Then
one could consider EW̃ a reduction of E. However this might not be well
defined as illustrated by the following example:

Example. Let p be a prime other than 2 or 3. Consider the Weierstrass
equation

y2 = x3 + p

over the field Qp( 6
√
p). This equation has discriminant −432p2 and reduces

to y2 = x3 over the residue field Fp, which is a singular Weierstrass equation.
However, the change of variables x = 3

√
px′, y =

√
py′ gives the Weirstrass

equation
y′2 = x′3 + 1

which has discriminant −432 = −16 × 27, which is non-zero in the residue
field, that is, the reduced Weierstrass equation is nonsingular.

To avoid this, one considers only certain integral Weierstrass equations:

Definition. An integral Weierstrass equation for an elliptic curve E over
F said to be minimal, if vF (∆) is minimum among all integral Weierstrass
equations.
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Proposition 3.3.2. Any Elliptic Curve over F has a minimal Weierstrass
equation. If an integral Weierstrass equation W(x, y) and a minimal Weier-
strass equation W ′(x′, y′) for E are related by a change of variables of the
form:

x = u2x′ + r, y = u3y′ + u2sx′ + t

then u, r, s, t ∈ oF . Moreover, if both are Weierstrass equations are minimal,
then u ∈ UF .

Proof. The existence of a minimal Weierstrass equation follows from the ex-
istence of integral Weierstrass equations and the discreteness of the valua-
tion vF . Moreover, if we have two Weierstrass equations as in the statement,
then by proposition 3.3.1, they are related by a change of coordinates of the
form above with u ∈ F× and r, s, t ∈ F . However, if ∆ and ∆′ are the
discriminants of the two equations, then by the same proposition, we know
u12∆′ = ∆. But vF (∆) ≥ vF (∆

′), therefore vF (u) ≥ 0, i.e., u ∈ oF . That
r, s, t ∈ oF follows from similar analysis of the change of variable formulae
given in [Sil09, III.1 Table 3.1], for details see [Sil09, Proposition VII.1.3].
Moreover, if both the equations are minimal, then vF (∆) = vF (∆

′), so
vF (u) = 0.

An immediate consequence of this is that given two minimal Weierstrass
equations for E, their reductions modulo p are related by a standard change
of variables over k, giving us a well-defined notion of reduction of E:

Definition. Let E be an elliptic curve, and W be a minimal Weierstrass
equation for E. Then the curve Ẽ := EW̃ over the residue field k defined by

the reduction W̃ of W modulo p is called the reduction of E modulo p.

The reduction Ẽ can be of three types, based on nature of the reduced
Weierstrass equation W̃ over k as in (3.3.1):

Definition. We say an elliptic curve E over F has

(i) good (or stable) reduction, if Ẽ is nonsingular.

(ii) multiplicative (or semistable) reduction, if Ẽ has a node. The re-
duction is further called split or nonsplit if the slopes of the tangents
at the node lie or do not lie in k respectively.

(iii) additive (or unstable) reduction, if Ẽ has a cusp.
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In cases ii and iii, one also says E has bad reduction. These correspond
to the conditions i, ii.a and ii.b of the previous section. One concludes that
given a minimal Weierstrass equation W for E with ∆ and c4 as in the
last section, E has good reduction if v(∆) = 0, multiplicative reduction if
v(∆) > 0 and v(c4) = 0 and additive reduction if v(∆) > 0 and v(c4) > 0.

One has reduction map from E(F ) to Ẽ(k). First note that we have
a well defined map,

P2
F (F )→ P2

k(k)

P = [x1 : x2 : x3] 7→ P̃ = [x̃1 : x̃2 : x̃3]

where the representative coordinates [x1 : x2 : x3] are chosen such that
xi ∈ oF with atleast one in UF . Then using a minimal Weierstrass equation
and its reduction to embed E in P2

F and Ẽ in P2
k, we see that the above

map restricts to a map from E(F ) to Ẽ(k). Moreover the proposition 3.3.2
implies that this map does not depend on the choice of minimal Weierstrass
equation.

As noted in the last section, the nonsingular part Ẽns has a group struc-
ture. Define:

E0(F ) = {P ∈ E(F ) | P̃ ∈ Ẽns(k)}

Proposition 3.3.3. The reduction map E0(F ) → Ẽns(k) is a surjective
group homomorphism.

Proof. The surjectivity follows by Hensels’ lemma. The fact that the re-
duction is a group homomorphism essentially follows from the fact that the
group law of an elliptic curve is determined by the property that three points
on the curve sum to zero iff they are collinear (under an embedding into P2

via a Weierstrass equation), and the reduction map sends lines to lines. For
details, see [Sil09, Proposition VII.2.1].

So we can get a glimpse into the group of points of E via the reduction
map. Note that if E has good reduction, then E0(F ) = E(F ) and Ẽns =
Ẽ. Let p denote the residue characteristic of F . Then the reduction map
preserves the torsion away from p:
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Proposition 3.3.4. Let E be an elliptic curve over F with good reduction,
and m ≥ 1 is an integer coprime to char(k), then the reduction map,

E(F )[m]→ Ẽ(k)

is injective. Here, E(F )[m] denotes them-torsion in the abelian group E(F ).

Proof. See [Sil09, Proposition VII.3.1b].

Taking a direct limit of the reduction maps over all finite extensions of
F inside a fixed algebraic closure F̄ , one obtains a reduction map E(F̄ ) →
Ẽ(k̄), where we identify an algebraic closure k̄ of k with the residue field
of F̄ . Recall that we have actions of Galois groups ΩF = Gal(F̄ /F ) and
Gal(k̄/k) on E(F̄ ) and Ẽ(k̄) respectively. Further recall from chapter 2,that
we have an exact sequence,

1 IF ΩF Gal(k̄/k) 1,σ 7→σ̃

where σ̃ ∈ Gal(k̄/k) denotes the automorphism of the residue field induced
by σ and IF is the inertia group of the local field F . Using this we get
an action of ΩF on Ẽ(k̄), via the map σ 7→ σ̃. Then the reduction map is
ΩF -equivariant:

Lemma 3.3.5. Let P ∈ E(F̄ ) and σ ∈ ΩF . Then we have,

P̃ σ = P̃ σ̃

Proof. Suppose we have embeddings E ↪→ P2
F and Ẽ ↪→ P2

k given by a
minimal Weierstrass equation for E. Then if P = [x : y : z] with x, y, z ∈ oF
with atleast one in UF ,

P̃ σ = [σ̃(x) : σ̃(y) : σ̃(z)] = [σ̃(x̃) : σ̃(ỹ) : σ̃(z̃)] = P̃ σ̃

Definition. We call a set S with an action of ΩF unramified, if IF acts
trivially on S.

Proposition 3.3.6. Let E be an elliptic curve over F with good reduction.
Then:

(i) Let m ≥ 1 be an integer coprime to p. The reduction map induces an
ΩF -equivariant isomorphism E(K̄)[m] ∼= Ẽ(k̄)[m].
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(ii) Let ℓ ̸= p be a prime. The reduction map induces an ΩF -equivariant
isomorphism Tℓ(E) ∼= Tℓ(Ẽ).

In particular, E(K̄)[m] and Tℓ(E) are unramified for m and ℓ as above.

Proof. For (i), let F ′ ⊂ F̄ be the finite extension of F generated by coordi-
nates of all points in E(F̄ )[m]. Since E has good reduction, for a minimal
Weierstrass equation for E over F , vF ′(∆) = 0 = vF (∆), so it must also be
minimal over F ′. It then follows from proposition 3.3.4 that the reduction
map

E(F ′)[m] = E(F̄ )[m]→ Ẽ(k̄)[m]

is injective. But for σ ∈ IF , σ̃ is the trivial automorphism, so the result
follows from the lemma. Moreover, by proposition 3.2.1, both the domain
and codomain have m2 elements, so any injective map is an isomorphism.
The statment (ii) follows from (i) for m = ℓn, n ≥ 1.

Therefore the ℓ-adic representation of ΩF on Vℓ(E) is unramified, if E
has good reduction. Turns out the converse is also true:

Theorem 3.3.7 (Criterion of Néron-Ogg-Shafarevich). Let E be an elliptic
curve over a local field F . Then the following are equivalent:

(i) E has good reduction.

(ii) E[m] is unramified for all integers m ≥ 1 coprime to the char(k).

(iii) The Tate module Tℓ(E) is unramified for a prime (all primes) ℓ ̸=
char(k).

(iv) E[m] is unramified for infinitely many integers m ≥ 1 coprime to
char(k).

For a proof, see [Sil09, Theorem VII.7.1].

Corollary 3.3.7.1. Let σℓ : ΩF → AutZℓ
(Tℓ(E)) denote the action of ΩF

on the Tate module Tℓ(E) for some ℓ ̸= char(k). Then E has good reduction
over a finite extension F ′ of F , iff IF ′ ⊂ ker ρℓ.

Proof. The ℓ-adic representation on the Tate module of E over F ′ is exactly
σℓ |ΩF

. The corollary then follows immediately from the criterion of Néron-
Ogg-Shafarevich.

.
We now justify the terms stable, semistable and unstable for good, mul-

tiplicative and additive reductions respectively:
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Theorem 3.3.8 (Semistable reduction theorem). Let E be an elliptic curve
over F .

(i) If E has good or multiplicative reduction over F , for any finite ex-
tension F ′/F , the reduction type of E over F ′ is the same as that of
F .

(ii) There exists a finite extension F ′/F such that E has good or (split)
multiplicative reduction over F ′.

Proof. To see (i), let W(x, y) and W ′(x′, y′) be minimal Weierstrass equa-
tions over F and F ′ respectively. Then by proposition 3.3.2, they are related
by a change of coordinates,

x = u2x′ + r y = u3y′ + su2x+ t

where u, r, s, t ∈ oF ′ . Then from proposition 3.3.1, we have u12∆′ = ∆ and
u4c′4 = c4, where ∆,∆′, c4, c

′
4 are as in the proposition. But integrality of

W implies vF ′(∆), vF ′(c4) ≥ 0. Therefore,

0 ≤ vF ′(u) ≤ min

{
1

12
vF ′(∆),

1

4
vF ′(c4)

}
But then in case of good or multiplicative reduction over F , vF (∆) = 0 or
vF (c4) = 0 respectively. In either case, we get vF ′(u) = 0, so W is also
minimal over F ′; in particular, the reduction type over F ′ is same as that
of F .
For (ii), one writes a Weierstrass equation for E in Legendre of Deuring
normal form over a finite extension of F , and shows by hand that such an
equation must have good or multiplicative reduction, after possibly another
change of variables. For details see [Sil09, Proposition VII.5.4].

Hence good and multiplicative reduction are ”stable” under field exten-
sions, while additive reduction turns into good or multiplicative reduction
over some finite extension.

Definition. Let E be an elliptic curve over a local field F . Then we say
E has potentially good (resp. multiplicative) reduction if there is a
finite extension F ′/F such that E has good (resp. multiplicative) reduction
over F ′.

Then the previous theorem says exactly that every elliptic curve E over a
local field has either potentially good or potentially multiplicative reduction.
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Example. We go back to the example in the beginning of the section. The
Weierstrass equation

y2 = x3 + p

has discriminant ∆ = −432p2. In particular, vQp(∆) = 2. By proposition
3.3.1, a change of variables can only change vQp(∆) by 12, therefore this
equation is minimal. The reduced equation, y2 = x3 has just one tangent
at [0 : 0 : 1], hence the elliptic curve defined by this equation has additive
reduction. However as noted earlier, over Qp( 6

√
p), this curve is isomorphic

to the one defined by
y2 = x3 + 1

which has good reduction. Therefore, the elliptic curve y2 = x3 + p has
additive but potentially good reduction over Qp.

3.3.3 The Smooth Representation associated to an Elliptic
Curve

Given an Elliptic Curve over a non-Archimedean local field F of characteris-
tic zero and a prime ℓ ̸= p, the residue characteristic, we have an associated
ℓ-adic representation of the Galois group ΩF on the Tate module Vℓ(E),
which we denote by (σℓ, Vℓ(E)). Further denote by (σ∨ℓ , V̄ℓ(E)∨), the dual
of the extension of scalars of σℓ to a fixed algebraic closure Qℓ of Qℓ.
We construct a Weil-Deligne representation out of this as follows: Restrict
it to the Weil group WF , change scalars to C by choosing an isomorphism
ι : Qℓ

∼−→ C, and finally using the construction in theorem 2.4.4. Denote
the resulting Weil-Deligne representation by (σℓ,ι, Vℓ,ι, nℓ,ι). We suppress the
choices Φ and t required to apply theorem 2.4.4 since we only care about
the isomorphism class of the representation.

Theorem 3.3.9. The Weil-Deligne representation (σℓ,ι, Vℓ,ι, nℓ,ι) is F -
semisimple. Moreover its isomorphism class does not depend on choice of ℓ
or ι.

More precisely, this is what happens in the case of potentially good
reduction:

Theorem 3.3.10. Let E be an elliptic curve over a local field F with po-
tentially good reduction. Then (σℓ,ι, Vℓ,ι, nℓ,ι) = (σ∨ℓ |WF

,C ⊗ι V̄ℓ(E)∨, 0)
is F -semisimple, and the isomorphism class of this representation does not
depend on ℓ or ι. Moreover, E has good reduction over F iff σℓ is unramified.
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Proof. Suppose K/F is a finite extension such that E has good reduction
over E. The restriction of σℓ to WK is the ℓ-adic representation on the
Tate module of E as an elliptic curve over K, so by proposition 3.3.6, ρℓ
is trivial on IK , which is an open subgroup of IF . It follows that nℓ,ι = 0
(see theorem 2.4.2), and we have (σℓ,ι, Vℓ,ι, nℓ,ι) = (σ∨ℓ |WF

,C⊗ι V̄ℓ(E)∨, 0).
By proposition 2.3.6, F -semisimplicity of this representation is equivalent
to semisimplicity of σ∨ℓ .

Since K/F is a finite extension, to show σ∨ℓ is semisimple, it suffices to
show that σ∨ℓ |WK

is semisimple, by lemma 2.3.7. Therefore, we reduce to the
case E has good reduction overK = F . Let Φ ∈ WF be a Frobenius element.
By proposition 2.3.6, we only need to show that σ∨ell(Φ) acts semisimply on
C ⊗ι V̄ℓ(E)∨. However, by proposition 3.3.6, this is equivalent to showing
that Φ̃ = φ−1 ∈ Gal(k̄/k) acts semisimply on C⊗ι V̄ℓ(Ẽ)∨, where φ : x 7→ xq

is the Frobenius automorphism of the finite residue field k = Fq of F . But

the map φ is “algebraic”, that is, there is an element ϕ ∈ End(Ẽ), given
on coordinates by ϕ : [x : y : z] 7→ [xq : yq : zq], such that φ = ϕℓ, the
Tate module endomorphism induced by ϕ. But by corollary 3.2.4.1, ϕℓ acts
semisimply on Vℓ(Ẽ), and hence on its dual.

The independence of isomorphism class from choices of ℓ and ι follows
from the following:

Theorem 3.3.11 ([ST68, Corollary to Theorem 3]). Let E be an elliptic
curve over a local field F with potentially good reduction and ℓ ̸= p. Further,
let (σℓ, Tℓ(E)) be the ℓ-adic representation of ΩF on the Tate module. Then
for x ∈ WF , the characteristic polynomial of ρℓ(x) has coefficients in Q and
is independent of ℓ.

Theorem 3.3.12 ([Eti+, Theorem 3.6.2]). Let A be an algebra over C.
Characters of all irreducible finite dimensional representations of A are lin-
early independent.

By theorem 3.3.11, it follows that for x ∈ WF , tr(σℓ(x)) ∈ Q and is
independent of ℓ. Rationality further makes tr(σℓ,ι(x)) = ι(tr(σℓ(x))) inde-
pendent of choice of ι. Therefore the character of the semisimple represen-
tation C[WF ]-representation σℓ,ι does not depend on ℓ or ι. The result then
follows from theorem 3.3.12. Finally, the claim about good reduction iff the
smooth representation is unramified is exactly the criterion of Néron-Ogg-
Shafarevich.

We state without proof what happens in the case of potentially multi-
plicative reduction:
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Theorem 3.3.13. Let E be an elliptic curve over a local field R with po-
tentially multiplicative reduction. There exists a character χ of WF such
that χ2 = 1, (σE , VE , nE) ∼= χ∥·∥−

1
2 ⊗ sp(2), and χ is trivial, unramified but

non-trivial or ramified if E has split multiplicative, nonsplit multiplicative
or additive reduction over F respectively.

For a proof, see [Roh94, Section 15]. Note that their definition of sp(n)
is different from ours, leading to slightly different statements.
Therefore, we can just write (σE , VE , nE) for the above Weil-Deligne repre-
sentation constructed from E. Since its 2-dimensional and F -semisimple, we
can use the Langlands correspondence we stated at the start of this chap-
ter to obtain an irreducible smooth representation πE := π((σE , VE , nE)) of
GL2(F ). Call this the smooth representation of GL2(F ) associated
to E. Our goal is to analyze what this looks like based on properties of E.
First, a we need a result to handle the case of good reduction.

Theorem 3.3.14 ([Sil09, Proposition II.2.11, Theorem V.2.3.1]). Let E be
an elliptic curve over a finite field Fq, and let ϕ ∈ End(E) be the Frobenius
endomorphism. Then,

deg(ϕ) = q, deg(1− ϕ) = |E(Fq)|

Let P (T ) = T 2 − aT + q be the characteristic polynomial of ϕℓ for any ℓ ̸=
char(Fq) where a = (q+1− |E(Fq)|) (see proposition 3.2.4), and α1, α2 ∈ C
be its roots. Then |αi| =

√
q.

Theorem 3.3.15. Let E be an elliptic curve over a non-Archimedean local
field F of characteristic zero, and πE be the associated irreducible smooth
representation of GL2(F ), as defined above. Then we have the following:

(i) Suppose E has good reduction over an abelian extension of F , then
πE ∼= ιBE(χ1⊗χ2) for characters χ1, χ2 of F× such that χ1χ

−1
2 ̸= ∥·∥±

or πE ∼= χ ◦ det for some character χ of F×.

(ii) Suppose E has potentially good reduction, but not over an abelian ex-
tension of F . Then πE is a cuspidal representation.

(iii) Suppose E has good reduction over F , and α1, α2 are the roots of the
polynomial T 2 − aT + q, where a = q + 1 − |Ẽ(Fq)| and q is the size
of the residue field. Then πE ∼= ιGB(χ1 ⊗ χ2), where χi are unramified
characters of F× determined by χi(ϖ) = αi.

(iv) Suppose E has potentially multiplicative reduction, then πE ∼= χStG
for a character χ of F×.
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(a) If E has split multiplicative reduction over F , χ = ∥·∥−
1
2 .

(b) If E has nonsplit multiplicative reduction over F , χ ̸= ∥·∥−
1
2 is

unramified.

(c) If E has additive reduction over F , χ is ramified.

Proof. Throughout the proof, ℓ denotes a prime number not equal to the
residue characteristic p.
(i),(ii) If E has good reduction over an abelian extension K/F , then by
corollary 3.3.7.1, the commutator Wc

F ⊂ WK ∩ IF = IK ⊂ kerσℓ. Con-
versely, If E has good reduction over some extension K/F andWc

F ⊂ kerσℓ,
then if K ′ = K ∩ F ab is the maximal abelian subextension of K, then
WK′ =WKWc

F . In particular IK′ =WK′ ∩ IF = IKWc
F ⊂ kerσℓ, by theo-

rem 3.3.6. Therefore by the criterion of Néron-Ogg-Shafarevich, E has good
reduction over the abelian extension K ′.

In particular if E has potentially good reduction, it attains good
reduction over an abelian extension of F iff Wc

F ⊂ kerσℓ or equivalently,
the σℓ (or equivalently σ∨ℓ ) factors through an abelian group. By theorem
3.3.10, (σE , VE , nE) ∼= (σ∨ℓ ,C ⊗ι V̄ℓ(E)∨, 0), and is F -semisimple. If E
does not attain good reduction over an abelian extension, the image of
σ∨ℓ = σE must be non-abelian. This is only possible if (σE , VE , nE) ∈ G0

2(E),
therefore πE is a cuspidal representation by proposition 3.1.4.
If E does attain good reduction over an abelian extension, σ∨ℓ factors
through an abelian group, so the semisimple (Proposition 2.3.6) smooth
representation (σ∨ℓ ,C⊗ιV̄ℓ(E)∨) , decomposes into a direct sum of characters
(Corollary 1.2.6.2). Therefore, (σE , VE , nE) ∼= (χ1,C, 0) ⊕ (χ2,C, 0), and
(i) follows from the explicit description of the Langlands correspondence in
theorem 3.1.5.

(iii) If E has good reduction over F , then we have a ΩF -equivariant
isomorphism Tℓ(E) ∼= Tℓ(Ẽ). So by theorem 3.3.10, we get (σE , VE , nE) ∼=
(σ̃∨ℓ ,C ⊗ι V̄ℓ(Ẽ)∨, 0), where (σ̃ℓ, V̄ℓ(Ẽ)) is the extension of scalars to Qℓ of

the ℓ-adic representation of Gal(k̄/k) on the Tate module of Ẽ, seen as
a representation of WF via the usual map WF ⊂ ΩF → Gal(k̄/k). But
then σ̃ℓ factors through WF /IF ∼= Z. Moreover, Φ ∈ WF acts as ϕ−1

ℓ

on Vℓ(Ẽ), where ϕ ∈ End(Ẽ) is the Frobenius endomorphism as in the
proof of theorem 3.3.10, and ϕℓ is its induced action on the Tate module.
By theorem 3.2.4 and its corollary, we have that ϕℓ acts semisimply with
eigenvalues given by roots of the polynomial,

T 2 − (1 + deg(ϕ)− deg(1− ϕ))T + deg(ϕ) = 0

80



3.3. Elliptic Curves over Local Fields

which are exactly α1 and α2 by theorem 3.3.14. Therefore Φ acts
semisimply with eigenvalues α−1

1 and α−1
2 on V̄ℓ(Ẽ)). So now we have

(σE , VE , nE) ∼= (σ̃∨ℓ ,C ⊗ι V̄ℓ(Ẽ)∨, 0), with σ∨ℓ factoring through WF /IF
and Φ acting semisimply with eigenvalues α1 and α2. It follows that
(ρE , VE , nE) ∼= (χ1,C, 0) ⊕ (χ2,C, 0), with χi as in the statement. The
claim then follows from theorem 3.1.5, and the fact that |αi| =

√
q (theorem

3.3.14), so χ1χ
−1
2 ̸= ∥·∥±.

(iv) This follows immediately from theorems 3.3.13 and 3.1.5.
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